DOI QR코드

DOI QR Code

Biological activities and biomedical potential of sea cucumber (Stichopus japonicus): a review

  • Oh, Gun-Woo (Department of Biomedical Engineering, and Center for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University) ;
  • Ko, Seok-Chun (Marine-Integrated Bionics Research Center, Pukyong National University) ;
  • Lee, Dong Hee (Gyeongbuk Institute for Bio industry) ;
  • Heo, Soo-Jin (Jeju International Marine Science Center for Research & Education, Korea Institute of Ocean Science and Technology) ;
  • Jung, Won-Kyo (Department of Biomedical Engineering, and Center for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University)
  • Received : 2017.07.10
  • Accepted : 2017.09.26
  • Published : 2017.11.30

Abstract

Members of the phylum Echinodermata, commonly known as echinoderms, are exclusively marine invertebrates. Among the Echinodermata, sea cucumber belongs to the family Holothuroidea. The sea cucumber Stichopus (Apostichous) japonicus (Selenka) is an invertebrate animal inhabiting the coastal sea around Korean, Japan, China, and Russia. Sea cucumber has a significant commercial value, because it contains valuable nutrients such as vitamins and minerals. They possess a number of distinctive biologically and pharmacologically important compounds. In particular, the body wall of sea cucumber is a major edible part. It consists of peptide, collagen, gelatin, polysaccharide, and saponin, which possess several biological activities such as anti-cancer, anti-coagulation, anti-oxidation, and anti-osteoclastogenesis. Furthermore, the regenerative capacity of sea cucumber makes it a medically important organism. This review presents the various biological activities and biomedical potential of sea cucumber S. japonicus.

Keywords

References

  1. Ale MT, Meyer AS. Fucoidans from brown seaweeds: An update on structures, extraction techniques and use of enzymes as tools for structural elucidation. RSC Adv. 2013;3:8131-41. https://doi.org/10.1039/C3RA23373A
  2. Ale MT, Mikkelsen JD, Meyer AS. Important determinants for fucoidan bioactivity: a critical review of structure-function relations and extraction methods for fucose-containing sulfated polysaccharides from brown seaweeds. Mar Drugs. 2011;9:2106-30. https://doi.org/10.3390/md9102106
  3. Alves RRN, Rosa IL. Animals in traditional folk medicine: implications for conservation. Berlin Heidelberg: Springer; 2012.
  4. Anderson SC, Flemming JM, Watson R, Lotze HK. Serial exploitation of global sea cucumber fisheries. Fish Fish. 2011;12:317-39. https://doi.org/10.1111/j.1467-2979.2010.00397.x
  5. Arron JR, Choi Y. Osteoimmunology: bone versus immune system. Nature. 2000; 408:535-6. https://doi.org/10.1038/35046196
  6. Aydin M, Sevgili H, Tufan B, Emre Y, Kose S. Proximate composition and fatty acid profile of three different fresh and dried commercial sea cucumbers from Turkey. Int J Food Sci Technol. 2011;46:500-8. https://doi.org/10.1111/j.1365-2621.2010.02512.x
  7. Bai Y, Zhang L, Liu S, Ru X, Xing L, Cao X, Zhang T, Yang H. The effect of salinity on the growth, energy budget and physiological performance of green, white and purple color morphs of sea cucumber, Apostichopus japonicus. Aquaculture. 2015;437:297-303. https://doi.org/10.1016/j.aquaculture.2014.12.020
  8. Bickers DR, Athar M. Oxidative stress in the pathogenesis of skin disease. J Invest Dermatol. 2006;126:2565-75. https://doi.org/10.1038/sj.jid.5700340
  9. Bordbar S, Anwar F, Saari N. High-value components and bioactives from sea cucumbers for functional foods-a review. Marine Drugs. 2011;9:1761-805. https://doi.org/10.3390/md9101761
  10. Cabiscol E, Tamarit J, Ros J. Oxidative stress in bacteria and protein damage by reactive oxygen species. Int Microb. 2000;3:3-8.
  11. Cai Q, Yang J, Bei J, Wang S. A novel porous cells scaffold made of polylactide-dextran blend by combining phase-separation and particle-leaching techniques. Biomaterials. 2002;23:4483-92. https://doi.org/10.1016/S0142-9612(02)00168-0
  12. Cao RA, Surayot U, You S. Structural characterization of immunostimulating protein-sulfated fucan complex extracted from the body wall of a sea cucumber, Stichopus japonicus. Int J Biol Macromol. 2017;99:539-48. https://doi.org/10.1016/j.ijbiomac.2017.03.026
  13. Cao X, Yeo G, Muotri AR, Kuwabara T, Gage FH. Noncoding RNAs in the mammalian central nervous system. Annu Rev Neurosci. 2006;29:77-103. https://doi.org/10.1146/annurev.neuro.29.051605.112839
  14. Chandika P, Ko S, Jung W. Marine-derived biological macromolecule-based biomaterials for wound healing and skin tissue regeneration. Int J Biol Macromol. 2015;77:24-35. https://doi.org/10.1016/j.ijbiomac.2015.02.050
  15. Chen WC, Tseng TS, Hsiao NW, Lin YL, Wen ZH, Tsai CC, Lee YC, Lin HH, Tsai KC. Discovery of highly potent tyrosinase inhibitor, T1, with significant antimelanogenesis ability by zebrafish in vivo assay and computational molecular modeling. Sci Rep. 2015;5:7995. https://doi.org/10.1038/srep07995
  16. Chen Z, Wang P, Wei B, Mo X, Cui F. Electrospun collagen-chitosan nanofiber: A biomimetic extracellular matrix for endothelial cell and smooth muscle cell. Acta Biomater. 2010;6:372-82. https://doi.org/10.1016/j.actbio.2009.07.024
  17. Chiasson JL, Josse RG, Gomis R, Hanefeld M, Karasik A, Laakso M, Group SNTR. Acarbose for prevention of type 2 diabetes mellitus: the STOP-NIDDM randomised trial. Lancet. 2002;359:2072-7. https://doi.org/10.1016/S0140-6736(02)08905-5
  18. Choi J, Seo JY, Lee SM. Effects of sources and levels of dietary carbohydrate on growth and body composition of juvenile sea cucumbers, Apostichopus japonicus. Fish Aquatic Sci. 2009;12:203-8. https://doi.org/10.5657/fas.2009.12.3.203
  19. Cui C, Cui N, Wang P, Song S, Liang H, Ji A. Sulfated polysaccharide isolated from the sea cucumber Stichopus japonicus against PC12 hypoxia/reoxygenation injury by inhibition of the MAPK signaling pathway. Cell Mol Neurobiol. 2015;35:1081-92. https://doi.org/10.1007/s10571-015-0202-x
  20. Cui C, Cui N, Wang P, Song S, Liang H, Ji A. Neuroprotective effect of sulfated polysaccharide isolated from sea cucumber Stichopus japonicus on 6-OHDAinduced death in SH-SY5Y through inhibition of MAPK and NF-${\kappa}B$ and activation of PI3K/Akt signaling pathways. Biochem Bioph Res Co. 2016a;470:375-83. https://doi.org/10.1016/j.bbrc.2016.01.035
  21. Cui C, Wang P, Cui N, Song S, Liang H, Ji A. Stichopus japonicus polysaccharide, fucoidan, or heparin enhanced the SDF-$1{\alpha}$/CXCR4 axis and promoted NSC migration via activation of the PI3K/Akt/FOXO3a signaling pathway. Cell Mol Neurobiol. 2016b;36:1311-29. https://doi.org/10.1007/s10571-016-0329-4
  22. Cui C, Wang P, Cui N, Song S, Liang H, Ji A. Sulfated polysaccharide isolated from the sea cucumber Stichopus japonicus promotes the SDF-$1{\alpha}$/CXCR4 axisinduced NSC migration via the PI3K/Akt/FOXO3a, ERK/MAPK, and NF-${\kappa}B$ signaling pathways. Neurosci Lett. 2016c;16:57-64.
  23. Cui FX, Xue CH, Li ZJ, Zhang YQ, Dong P, Fu XY, Gao X. Characterization and subunit composition of collagen from the body wall of sea cucumber Stichopus japonicus. Food Chem. 2007;100:1120-5. https://doi.org/10.1016/j.foodchem.2005.11.019
  24. Cuong NX, Nhiem NX, Thao NP, Nam NH, Dat NT, Anh HLT, Van Kiem P, Van Minh C, Won JH, Chung WY. Inhibitors of osteoclastogenesis from Lawsonia inermis leaves. Bioorg Med Chem Lett. 2010;20:4782-4. https://doi.org/10.1016/j.bmcl.2010.06.118
  25. Dong P, Xue CH, Yu LF, XU J, Chen SG. Determination of triterpene glycosides in sea cucumber (stichopus japonicus) and its related products by highperformance liquid chromatography. J Agric Food Chem. 2008;56:4937-42. https://doi.org/10.1021/jf800893r
  26. Dong Y, Dong S, Tian X, Wang F, Zhang M. Effects of diel temperature fluctuations on growth, oxygen consumption and proximate body composition in the sea cucumber Apostichopus japonicus Selenka. Aquaculture. 2006;255:514-21. https://doi.org/10.1016/j.aquaculture.2005.12.013
  27. Du H, Bao Z, Hou R, Wang S, Su H, Yan J, Tian M, Li Y, Wei W, Lu W. Transcriptome sequencing and characterization for the sea cucumber Apostichopus japonicus (Selenka, 1867). PLoS One. 2012;7:e33311. https://doi.org/10.1371/journal.pone.0033311
  28. Duan X, Zhang M, Mujumdar AS, Wang S. Microwave freeze drying of sea cucumber (Stichopus japonicus). J Food Eng. 2010;96:491-7. https://doi.org/10.1016/j.jfoodeng.2009.08.031
  29. Dupont S, Ortega-Martinez O, Thorndyke M. Impact of near-future ocean acidification on echinoderms. Ecotoxicology. 2010;19:449-62. https://doi.org/10.1007/s10646-010-0463-6
  30. Evan GI, Vousden KH. Proliferation, cell cycle and apoptosis in cancer. Nature. 2001;411:342-8. https://doi.org/10.1038/35077213
  31. Fang FC. Antimicrobial reactive oxygen and nitrogen species: concepts and controversies. Nat Rev Microbiol. 2004;2:820-32. https://doi.org/10.1038/nrmicro1004
  32. FAO. Sea cucumbers: A global review of fisheries and trade. Rome: Technical Report 516, Food and Agriculture Organization of the United Nations; 2008.
  33. Ferdouse F. World markets and trade flows of sea cucumber/beche-de-mar. In: Advances in sea cucumber aquaculture and management. Rome: Food and Agriculture Organization of the United Nations; 2004. p. 101-16.
  34. Gailani D, Renne T. Intrinsic pathway of coagulation and arterial thrombosis. Arterioscl Throm Vas. 2007;27:2507-13. https://doi.org/10.1161/ATVBAHA.107.155952
  35. Gao F, Xu Q, Yang H. Seasonal biochemical changes in composition of body wall tissues of sea cucumber Apostichopus japonicus. Chin J Oceanol Limn. 2011a; 29:252-60. https://doi.org/10.1007/s00343-011-0041-7
  36. Gao QF, Wang Y, Dong S, Sun Z, Wang F. Absorption of different food sources by sea cucumber Apostichopus japonicus (Selenka)(Echinodermata: Holothuroidea): evidence from carbon stable isotope. Aquaculture. 2011b; 319:272-6. https://doi.org/10.1016/j.aquaculture.2011.06.051
  37. Gunn J, Zhang M. Polyblend nanofibers for biomedical applications: perspectives and challenges. Trends Biotechnol. 2010;28:189-97. https://doi.org/10.1016/j.tibtech.2009.12.006
  38. Hendry SA, Farnsworth RH, Solomon B, Achen MG, Stacker SA, Fox SB. The Role of the Tumor Vasculature in the Host Immune Response: Implications for Therapeutic Strategies Targeting the Tumor Microenvironment. Front Immunol. 2016;7:621.
  39. Heo SJ, Hwang JY, Choi JI, Han JS, Kim HJ, Jeon YJ. Diphlorethohydroxycarmalol isolated from Ishige okamurae, a brown algae, a potent ${\alpha}$-glucosidase and ${\alpha}$-amylase inhibitor, alleviates postprandial hyperglycemia in diabetic mice. Eur J Pharmacol. 2009;615:252-6. https://doi.org/10.1016/j.ejphar.2009.05.017
  40. Himaya S, Ryu B, Qian ZJ, Kim SK. Sea cucumber, Stichopus japonicus ethyl acetate fraction modulates the lipopolysaccharide induced iNOS and COX-2 via MAPK signaling pathway in murine macrophages. Environ Toxicol Phar. 2010;30:68-75. https://doi.org/10.1016/j.etap.2010.03.019
  41. Holtkamp AD, Kelly S, Ulber R, Lang S. Fucoidans and fucoidanases-focus on techniques for molecular structure elucidation and modification of marine polysaccharides. Appl Microbiol Biot. 2009;82:1. https://doi.org/10.1007/s00253-008-1790-x
  42. Horner PJ, Gage FH. Regenerating the damaged central nervous system. Nature. 2000;407:963-70. https://doi.org/10.1038/35039559
  43. Huang THW, Peng G, Li GQ, Yamahara J, Roufogalis BD, Li Y. Salacia oblonga root improves postprandial hyperlipidemia and hepatic steatosis in Zucker diabetic fatty rats: activation of PPAR-${\alpha}$. Toxicol Appl Pharm. 2006;210:225-35. https://doi.org/10.1016/j.taap.2005.05.003
  44. Husni A, Jeon JS, Um BH, Han NS, Chung D. Tyrosinase inhibition by water and ethanol extracts of a far eastern sea cucumber, Stichopus japonicus. Food Sci Biotechnol. 2011;91:1541-7.
  45. Husni A, Shin IS, You S, Chung D. Antioxidant properties of water and aqueous ethanol extracts and their crude saponin fractions from a far-eastern sea cucumber, Stichopus japonicus. Food Sci Biotechnol. 2009;18:419-24.
  46. Ikonen E. Cellular cholesterol trafficking and compartmentalization. Nat Rev Mol Cell Bio. 2008;9:125-38. https://doi.org/10.1038/nrm2336
  47. Ito S. A chemist's view of melanogenesis. Pigment Cell Res. 2003;16:230-6. https://doi.org/10.1034/j.1600-0749.2003.00037.x
  48. Jiang S, Dong S, Gao Q, Wang F, Tian X. Comparative study on nutrient composition and growth of green and red sea cucumber, Apostichopus japonicus (Selenka, 1867), under the same culture conditions. Aquac Res. 2013;44:317-20. https://doi.org/10.1111/j.1365-2109.2011.03033.x
  49. Jo J, Park C, Kim M, Park C. Phylogenetic Analysis of the Three Color Variations of the Sea Cucumber Apostichopus japonicus. J Aquac Res Development. 2016;7:2.
  50. Kaneko M, Kisa F, Yamada K, Miyamoto T, Higuchi R. Structure of a New Neuritogenic-Active Ganglioside from the Sea Cucumber Stichopus japonicus. European J Org Chem. 2003;2003:1004-8. https://doi.org/10.1002/ejoc.200390141
  51. Kan-no M, Kijima A. Genetic differentiation among three color variants of Japanese sea cucumber Stichopus japonicus. Fisheries Sci. 2003;69:806-12. https://doi.org/10.1046/j.1444-2906.2003.00690.x
  52. Kariya Y, Mulloy B, Imai K, Tominaga A, Kaneko T, Asari A, Suzuki K, Masuda H, Kyogashima M, Ishii T. Isolation and partial characterization of fucan sulfates from the body wall of sea cucumber Stichopus japonicus and their ability to inhibit osteoclastogenesis. Carbohydr Res. 2004;339:1339-46. https://doi.org/10.1016/j.carres.2004.02.025
  53. Kazantsev AG, Thompson LM. Therapeutic application of histone deacetylase inhibitors for central nervous system disorders. Nat Rev Drug Discov. 2008;7:854-68. https://doi.org/10.1038/nrd2681
  54. Kim J, Bentley PJ, Aickelin U, Greensmith J, Tedesco G, Twycross J. Immune system approaches to intrusion detection-a review. Nat Comput. 2007a;6:413-66. https://doi.org/10.1007/s11047-006-9026-4
  55. Kim NY, Choi WY, Heo SJ, Kang DH, Lee HY. Anti-skin cancer activities of Apostichopus japonicus extracts from low-temperature ultrasonification process. J Healthc Eng. 2017;2017
  56. Kim R, Emi M, Tanabe K. Cancer immunoediting from immune surveillance to immune escape. Immunology. 2007b;121:1-14. https://doi.org/10.1111/j.1365-2567.2007.02587.x
  57. Ko SH, Go S, Okorie OE, Kim YC, Lee S, Yoo GY, Bai SC. Preliminary Study of the Dietary ${\alpha}$-Tocopherol Requirement in Sea Cucumber, Apostichopus japonicus. J World Aquacult Soc. 2009;40:659-66. https://doi.org/10.1111/j.1749-7345.2009.00285.x
  58. Lee MH, Kim YK, Moon HS, Kim KD, Kim GG, Cho HA, Yoon NY, Sim KB, Park HY, Lee DS. Comparison on proximate composition and nutritional profile of red and black sea cucumbers (Apostichopus japonicus) from Ulleungdo (Island) and Dokdo (Island). Korea Food Sci Biotechnol. 2012;21:1285-91. https://doi.org/10.1007/s10068-012-0169-z
  59. Li B, Lu F, Wei X, Zhao R. Fucoidan: structure and bioactivity. Molecules. 2008;13:1671-95. https://doi.org/10.3390/molecules13081671
  60. Li L, Li Q. Effects of stocking density, temperature, and salinity on larval survival and growth of the red race of the sea cucumber Apostichopus japonicus (Selenka). Aquacult Int. 2010;18:447-60. https://doi.org/10.1007/s10499-009-9256-4
  61. Li Y, Wang L, Liu Z, Li C, Xu J, Gu Q, Xu J. Predicting selective liver X receptor $\beta$ agonists using multiple machine learning methods. Mol BioSyst. 2015;11:1241-50. https://doi.org/10.1039/C4MB00718B
  62. Li Z, Ramay HR, Hauch KD, Xiao D, Zhang M. Chitosan-alginate hybrid scaffolds for bone tissue engineering. Biomaterials. 2005;26:3919-28. https://doi.org/10.1016/j.biomaterials.2004.09.062
  63. Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature. 2006;443:787-95. https://doi.org/10.1038/nature05292
  64. Liu D, Liang L, Regenstein JM, Zhou P. Extraction and characterisation of pepsinsolubilised collagen from fins, scales, skins, bones and swim bladders of bighead carp (Hypophthalmichthys nobilis). Food Chem. 2012a;133:1441-8. https://doi.org/10.1016/j.foodchem.2012.02.032
  65. Liu X, Sun Z, Zhang M, Meng X, Xia X, Yuan W, Xue F, Liu C. Antioxidant and antihyperlipidemic activities of polysaccharides from sea cucumber Apostichopus japonicus. Carbohyd Polym. 2012b;90:1664-70. https://doi.org/10.1016/j.carbpol.2012.07.047
  66. Lu Y, Zhang BY, Dong Q, Wang BL, Sun XB. The effects of Stichopus japonicus acid mucopolysaccharide on the apoptosis of the human hepatocellular carcinoma cell line HepG2. Am J Med Sci. 2010;339:141-4. https://doi.org/10.1097/MAJ.0b013e3181c20d01
  67. Machado M, Nassor N, Bajcar JM, Guzzo GC, Einarson TR. Sensitivity of patient outcomes to pharmacist interventions. Part III: systematic review and metaanalysis in hyperlipidemia management. Ann Pharmacother. 2008;42:1195-207. https://doi.org/10.1345/aph.1K618
  68. Mackman N, Tilley RE, Key NS. Role of the extrinsic pathway of blood coagulation in hemostasis and thrombosis. Arterioscl Throm Vas. 2007;27:1687-93. https://doi.org/10.1161/ATVBAHA.107.141911
  69. Maddika S, Ande SR, Panigrahi S, Paranjothy T, Weglarczyk K, Zuse A, Eshraghi M, Manda KD, Wiechec E, Los M. Cell survival, cell death and cell cycle pathways are interconnected: implications for cancer therapy. Drug Resist Updat. 2007;10:13-29. https://doi.org/10.1016/j.drup.2007.01.003
  70. Maertens J, Raad I, Petrikkos G, Boogaerts M, Selleslag D, Petersen FB, Sable CA, Kartsonis NA, Ngai A, Taylor A. Efficacy and safety of caspofungin for treatment of invasive aspergillosis in patients refractory to or intolerant of conventional antifungal therapy. Clin Infect Dis. 2004;39:1563-71. https://doi.org/10.1086/423381
  71. Marcus A, Gowen BG, Thompson TW, Iannello A, Ardolino M, Deng W, Wang L, Shifrin N, Raulet DH. Recognition of tumors by the innate immune system and natural killer cells. Adv Immunol. 2014;122:91.
  72. Mestechkina N, Shcherbukhin V. Sulfated polysaccharides and their anticoagulant activity: A review. Appl Biochem Micro. 2010;46:267-73. https://doi.org/10.1134/S000368381003004X
  73. Moller DE. New drug targets for type 2 diabetes and the metabolic syndrome. Nature. 2001;414:821-7. https://doi.org/10.1038/414821a
  74. Muralidharan N, Shakila RJ, Sukumar D, Jeyasekaran G. Skin, bone and muscle collagen extraction from the trash fish, leather jacket (Odonus niger) and their characterization. J Food Sci Tech. 2013;50:1106-13. https://doi.org/10.1007/s13197-011-0440-y
  75. Nguyen TH, Um BH, Kim SM. Two Unsaturated Fatty Acids with Potent ${\alpha}$-Glucosidase Inhibitory Activity Purified from the Body Wall of Sea Cucumber (Stichopus japonicus). J Food Sci. 2011;76:H208-14. https://doi.org/10.1111/j.1750-3841.2011.02391.x
  76. Oh CT, Kwon TR, Jang YJ, Yoo KH, Kim BJ, Kim H. Inhibitory effects of Stichopus japonicus extract on melanogenesis of mouse cells via ERK phosphorylation. Mol Med Rep. 2017;16:1079-86. https://doi.org/10.3892/mmr.2017.6686
  77. Oh GW, Ko SC, Heo SY, Nguyen VT, Kim G, Jang CH, Park WS, Choi IW, Qian ZJ, Jung WK. A novel peptide purified from the fermented microalga Pavlova lutheri attenuates oxidative stress and melanogenesis in B16F10 melanoma cells. Process Biochem. 2015;50:1318-26. https://doi.org/10.1016/j.procbio.2015.05.007
  78. Okorie OE, Ko SH, Go S, Lee S, Bae JY, Han K, Bai SC. Preliminary study of the optimum dietary ascorbic acid level in sea cucumber, Apostichopus japonicus (Selenka). J World Aquacult Soc. 2008;39:758-65. https://doi.org/10.1111/j.1749-7345.2008.00211.x
  79. Park SY, Lim HK, Lee S, Cho SK, Park S, Cho M. Biological effects of various solvent fractions derived from Jeju Island red sea cucumber (Stichopus japonicas). J Korean Soc Appl Biol Chem. 2011;54:718-24.
  80. Park SY, Lim HK, Lee S, Hwang HC, Cho SK, Cho M. Pepsin-solubilised collagen (PSC) from Red Sea cucumber (Stichopus japonicus) regulates cell cycle and the fibronectin synthesis in HaCaT cell migration. Food Chem. 2012;132:487-92. https://doi.org/10.1016/j.foodchem.2011.11.032
  81. Pati F, Adhikari B, Dhara S. Isolation and characterization of fish scale collagen of higher thermal stability. Bioresour Technol. 2010;101:3737-42. https://doi.org/10.1016/j.biortech.2009.12.133
  82. Patterson TF. Advances and challenges in management of invasive mycoses. Lancet. 2005;366:1013-25. https://doi.org/10.1016/S0140-6736(05)67381-3
  83. Pederson L, Ruan M, Westendorf JJ, Khosla S, Oursler MJ. Regulation of bone formation by osteoclasts involves Wnt/BMP signaling and the chemokine sphingosine-1-phosphate. Proc Natl Acad Sci U S A. 2008;105:20764-9. https://doi.org/10.1073/pnas.0805133106
  84. Pfaller MA, Diekema DJ. Epidemiology of invasive mycoses in North America. Crit Rev Microbiol. 2010;36:1-53. https://doi.org/10.3109/10408410903241444
  85. Pfaller MA, Pappas PG, Wingard JR. Invasive fungal pathogens: current epidemiological trends. Clin Infect Dis. 2006;43:S3-S14. https://doi.org/10.1086/504490
  86. Purcell SW, Conand C, Uthicke S, Byrne M. Ecological roles of exploited sea cucumber. Oceanor Mar Biol. 2016;54:367-86.
  87. Qiao Z, Koizumi Y, Zhang M, Natsui M, Flores MJ, Gao L, Yusa K, Koyota S, Sugiyama T. Anti-melanogenesis effect of Glechoma hederacea L. extract on B16 murine melanoma cells. Biosci Biotechnol Biochem. 2012;76:1877-83. https://doi.org/10.1271/bbb.120341
  88. Rachner TD, Khosla S, Hofbauer LC. Osteoporosis: now and the future. Lancet. 2011;377:1276-87. https://doi.org/10.1016/S0140-6736(10)62349-5
  89. Saito M, Kunisaki N, Urano N, Kimura S. Collagen as the major edible component of sea cucumber (Stichopus japonicus). J Food Sci. 2002;67:1319-22. https://doi.org/10.1111/j.1365-2621.2002.tb10281.x
  90. Schegg B, Hulsmeier AJ, Rutschmann C, Maag C, Hennet T. Core glycosylation of collagen is initiated by two $\beta$ (1-O) galactosyltransferases. Mol Cell Biol. 2009;29:943-52. https://doi.org/10.1128/MCB.02085-07
  91. Schepetkin IA, Kirpotina LN, Jakiw L, Khlebnikov AI, Blaskovich CL, Jutila MA, Quinn MT. Immunomodulatory activity of oenothein B isolated from Epilobium angustifolium. J Immunol. 2009;183:6754-66. https://doi.org/10.4049/jimmunol.0901827
  92. Senni K, Pereira J, Gueniche F, Delbarre-Ladrat C, Sinquin C, Ratiskol J, Godeau G, Fischer AM, Helley D, Colliec-Jouault S. Marine polysaccharides: a source of bioactive molecules for cell therapy and tissue engineering. Mar Drugs. 2011;9:1664-81. https://doi.org/10.3390/md9091664
  93. Seo JY, Shin IS, Lee SM. Effect of various protein sources in formulated diets on the growth and body composition of juvenile sea cucumber Apostichopus japonicus (Selenka). Aquac Res. 2011;42:623-7. https://doi.org/10.1111/j.1365-2109.2010.02653.x
  94. Sheng X, Li M, Song S, Zhang N, Wang Y, Liang H, Wang W, Ji A. Sulfated polysaccharide isolated from the sea cucumber Stichopus japonicus promotes neurosphere migration and differentiation via up-regulation of N-cadherin. Cell Mol Neurobiol. 2012;32:435-42. https://doi.org/10.1007/s10571-011-9773-3
  95. Sheng X, Zhang N, Song S, Li M, Liang H, Zhang Y, Wang Y, Ji A. Morphological transformation and proliferation of rat astrocytes as induced by sulfated polysaccharides from the sea cucumber Stichopus japonicus. Neurosci Lett. 2011;503:37-42. https://doi.org/10.1016/j.neulet.2011.08.003
  96. Shida M, Mikami T, Ji T, Kitagawa H. A characteristic chondroitin sulfate trisaccharide unit with a sulfated fucose branch exhibits neurite outgrowth-promoting activity: Novel biological roles of fucosylated chondroitin sulfates isolated from the sea cucumber Apostichopus japonicus. Biochem Bioph Res Co. 2017;487:678-83. https://doi.org/10.1016/j.bbrc.2017.04.114
  97. Slominski A, Tobin DJ, Shibahara S, Wortsman J. Melanin pigmentation in mammalian skin and its hormonal regulation. Physiol Rev. 2004;84:1155-228. https://doi.org/10.1152/physrev.00044.2003
  98. Song Y, Jin SJ, Cui LH, Ji XJ, Yang FG. Immunomodulatory effect of Stichopus japonicus acid mucopolysaccharide on experimental hepatocellular carcinoma in rats. Molecules. 2013;18:7179-93. https://doi.org/10.3390/molecules18067179
  99. Taylor SI. Deconstructing type 2 diabetes. Cell. 1999;97:9-12. https://doi.org/10.1016/S0092-8674(00)80709-6
  100. Tung YT, Chua MT, Wang SY, Chang ST. Anti-inflammation activities of essential oil and its constituents from indigenous cinnamon (Cinnamomum osmophloeum) twigs. Bioresour Technol. 2008;99:3908-13. https://doi.org/10.1016/j.biortech.2007.07.050
  101. Uriarte-Montoya MH, Arias-Moscoso JL, Plascencia-Jatomea M, Santacruz-Ortega H, Rouzaud-Sandez O, Cardenas-Lopez JL, Marquez-Rios E, Ezquerra-Brauer JM. Jumbo squid (Dosidicus gigas) mantle collagen: Extraction, characterization, and potential application in the preparation of chitosan-collagen biofilms. Bioresour Technol. 2010;101:4212-9. https://doi.org/10.1016/j.biortech.2010.01.008
  102. Versteeg HH, Heemskerk JW, Levi M, Reitsma PH. New fundamentals in hemostasis. Physiol Rev. 2013;93:327-58. https://doi.org/10.1152/physrev.00016.2011
  103. Wang J, Wang Y, Tang Q, Wang Y, Chang Y, Zhao Q, Xue C. Antioxidation activities of low-molecular-weight gelatin hydrolysate isolated from the sea cucumber Stichopus japonicus. J Ocean U China. 2010;9:94-8. https://doi.org/10.1007/s11802-010-0094-9
  104. Wang Z, Zhang H, Yuan W, Gong W, Tang H, Liu B, Krohn K, Li L, Yi Y, Zhang W. Antifungal nortriterpene and triterpene glycosides from the sea cucumber Apostichopus japonicus Selenka. Food Chem. 2012;132:295-300. https://doi.org/10.1016/j.foodchem.2011.10.080
  105. Wei YH, Lee HC. Oxidative stress, mitochondrial DNA mutation, and impairment of antioxidant enzymes in aging. Exp Biol Med. 2002;227:671-82. https://doi.org/10.1177/153537020222700901
  106. Wu B, Xia S, Rahman M, Rajkumar M, Fu Z, Tan J, Yang A. Substituting seaweed with corn leaf in diet of sea cucumber (Apostichopus japonicus): Effects on growth, feed conversion ratio and feed digestibility. Aquaculture. 2015;444:88-92. https://doi.org/10.1016/j.aquaculture.2015.03.026
  107. Wu HT, Li DM, Zhu BW, Sun JJ, Zheng J, Wang FL, Konno K, Jiang X. Proteolysis of noncollagenous proteins in sea cucumber, Stichopus japonicus, body wall: Characterisation and the effects of cysteine protease inhibitors. Food Chem. 2013;141:1287-94. https://doi.org/10.1016/j.foodchem.2013.03.088
  108. Xia B, Gao QF, Wang J, Li P, Zhang L, Zhang Z. Effects of dietary carbohydrate level on growth, biochemical composition and glucose metabolism of juvenile sea cucumber Apostichopus japonicus (Selenka). Aquaculture. 2015;448:63-70. https://doi.org/10.1016/j.aquaculture.2015.05.038
  109. Xu X, Yin P, Wan C, Chong X, Liu M, Cheng P, Chen J, Liu F, Xu J. Punicalagin inhibits inflammation in LPS-induced RAW264. 7 macrophages via the suppression of TLR4-mediated MAPKs and NF-${\kappa}B$ activation. Inflammation. 2014;37:956-65. https://doi.org/10.1007/s10753-014-9816-2
  110. Yang H, Zhou Y, Zhang T, Yuan X, Li X, Liu Y, Zhang F. Metabolic characteristics of sea cucumber Apostichopus japonicus (Selenka) during aestivation. J Exp Mar Biol Ecol. 2006;330:505-10. https://doi.org/10.1016/j.jembe.2005.09.010
  111. Yang J, Wang Y, Jiang T, Lv L, Zhang B, Lv Z. Depolymerized glycosaminoglycan and its anticoagulant activities from sea cucumber Apostichopus japonicus. Int J Biol Macromol. 2015a;72:699-705. https://doi.org/10.1016/j.ijbiomac.2014.09.025
  112. Yang J, Wang Y, Jiang T, Lv Z. Novel branch patterns and anticoagulant activity of glycosaminoglycan from sea cucumber Apostichopus japonicus. Int J Biol Macromol. 2015b;72:911-8. https://doi.org/10.1016/j.ijbiomac.2014.10.010
  113. Yoon W, Kim M, Koh H, Lee W, Lee N, Hyun C. Effect of Korean red sea cucumber (Stichopus japonicus) on melanogenic protein expression in murine B16 melanoma. Int J Pharmacol. 2010;6:37-42. https://doi.org/10.3923/ijp.2010.37.42
  114. Yu HB, Gao QF, Dong SL, Wen B. Changes in fatty acid profiles of sea cucumber Apostichopus japonicus (Selenka) induced by terrestrial plants in diets. Aquaculture. 2015a;442:119-24. https://doi.org/10.1016/j.aquaculture.2015.03.002
  115. Yu L, Xue C, Chang Y, Hu Y, Xu X, Ge L, Liu G. Structure and rheological characteristics of fucoidan from sea cucumber Apostichopus japonicus. Food Chem. 2015b;180:71-6. https://doi.org/10.1016/j.foodchem.2015.02.034
  116. Zhang Y, Song S, Liang H, Wang Y, Wang W, Ji A. Enhancing effect of a sea cucumber Stichopus japonicus sulfated polysaccharide on neurosphere formation in vitro. J Biosci Bioeng. 2010a;110:479-86. https://doi.org/10.1016/j.jbiosc.2010.05.009
  117. Zhang Y, Song S, Song D, Liang H, Wang W, Ji A. Proliferative effects on neural stem/progenitor cells of a sulfated polysaccharide purified from the sea cucumber Stichopus japonicus. J Biosci Bioeng. 2010b;109:67-72. https://doi.org/10.1016/j.jbiosc.2009.07.010
  118. Zheng J, Wu HT, Zhu BW, Dong XP, Zhang MM, Li YL. Identification of antioxidative oligopeptides derived from autolysis hydrolysates of sea cucumber (Stichopus japonicus) guts. Eur Food Res Technol. 2012;234:895-904. https://doi.org/10.1007/s00217-012-1708-9
  119. Zhou X, Wang C, Jiang A. Antioxidant peptides isolated from sea cucumber Stichopus japonicus. Eur Food Res Technol. 2012;234:441-7. https://doi.org/10.1007/s00217-011-1610-x
  120. Zhu BW, Dong XP, Zhou DY, Gao Y, Yang JF, Li DM, Zhao XK, Ren TT, Ye WX, Tan H. Physicochemical properties and radical scavenging capacities of pepsinsolubilized collagen from sea cucumber Stichopus japonicus. Food Hydrocolloid. 2012;28:182-8. https://doi.org/10.1016/j.foodhyd.2011.12.010
  121. Zohdi RM, Zakaria ZAB, Yusof N, Mustapha NM, Abdullah MNH. Sea cucumber (Stichopus hermanii) based hydrogel to treat burn wounds in rats. J Biomed Mater Res B. 2011;98:30-7.

Cited by

  1. Marine Natural Peptides: Determination of Absolute Configuration Using Liquid Chromatography Methods and Evaluation of Bioactivities vol.23, pp.2, 2018, https://doi.org/10.3390/molecules23020306
  2. The pepsinolytic hydrolysate from Johnius belengerii frame inhibited LPS-stimulated production of pro-inflammatory mediators via the inactivating of JNK and NF-κB pathways in RAW 264.7 macrophage vol.21, pp.5, 2018, https://doi.org/10.1186/s41240-018-0091-2
  3. Salt pan brine water as a sustainable source of sulphated polysaccharides with immunostimulatory activity vol.133, pp.None, 2017, https://doi.org/10.1016/j.ijbiomac.2019.04.021
  4. Chaetoglobosins and azaphilones from Chaetomium globosum associated with Apostichopus japonicus vol.104, pp.4, 2017, https://doi.org/10.1007/s00253-019-10308-0
  5. Bycatch sea cucumber Holothuria scabra processing and the quality characteristics vol.473, pp.None, 2017, https://doi.org/10.1088/1755-1315/473/1/012001
  6. In vivo mechanism of action of matrix metalloprotease (MMP) in the autolysis of sea cucumber (Stichopus japonicus) vol.44, pp.4, 2017, https://doi.org/10.1111/jfpp.14383
  7. Dieckol: an algal polyphenol attenuates urban fine dust-induced inflammation in RAW 264.7 cells via the activation of anti-inflammatory and antioxidant signaling pathways vol.32, pp.4, 2017, https://doi.org/10.1007/s10811-019-01964-w
  8. Potential Antioxidant Properties of Enzymatic Hydrolysates from Stichopus japonicus against Hydrogen Peroxide-Induced Oxidative Stress vol.10, pp.1, 2021, https://doi.org/10.3390/antiox10010110
  9. Rapid identification of geographical origin of sea cucumbers Apostichopus japonicus using FT-NIR coupled with light gradient boosting machine vol.124, pp.None, 2021, https://doi.org/10.1016/j.foodcont.2021.107883
  10. Characterization of β-secretase inhibitory extracts from sea cucumber (Stichopus japonicus) hydrolysis with their cellular level mechanism in SH-SY5Y cells vol.247, pp.8, 2017, https://doi.org/10.1007/s00217-021-03770-6
  11. The Role of Fibroblast Growth Factor (FGF) Signaling in Tissue Repair and Regeneration vol.10, pp.11, 2017, https://doi.org/10.3390/cells10113242
  12. Characterization of Marine Organism Extracellular Matrix-Anchored Extracellular Vesicles and Their Biological Effect on the Alleviation of Pro-Inflammatory Cytokines vol.19, pp.11, 2017, https://doi.org/10.3390/md19110592
  13. Characterizations and the Mechanism Underlying Osteogenic Activity of Peptides from Enzymatic Hydrolysates of Stichopus japonicus vol.69, pp.51, 2021, https://doi.org/10.1021/acs.jafc.1c06028