DOI QR코드

DOI QR Code

Determination of the critical diabetes duration in a streptozotocin-induced diabetic rat calvarial defect model for experimentation regarding bone regeneration

  • Kim, Hyun Ju (Department of Periodontology, Seoul National University School of Dentistry) ;
  • Jung, Bo Hyun (Department of Anatomy and Research Institute of Oral Sciences, Gangneung-Wonju National University College of Dentistry) ;
  • Yoo, Ki-Yeon (Department of Anatomy and Research Institute of Oral Sciences, Gangneung-Wonju National University College of Dentistry) ;
  • Han, Jin-Woo (Department of Oral and Maxillofacial Radiology and Research Institute of Oral Sciences, Gangneung-Wonju National University College of Dentistry) ;
  • Um, Heung-Sik (Department of Periodontology and Research Institute of Oral Sciences, Gangneung-Wonju National University College of Dentistry) ;
  • Chang, Beom-Seok (Department of Periodontology and Research Institute of Oral Sciences, Gangneung-Wonju National University College of Dentistry) ;
  • Lee, Jae-Kwan (Department of Periodontology and Research Institute of Oral Sciences, Gangneung-Wonju National University College of Dentistry)
  • Received : 2017.09.06
  • Accepted : 2017.09.30
  • Published : 2017.10.30

Abstract

Purpose: The purpose of this study was to determine the critical diabetes duration in a streptozotocin (STZ)-induced diabetic rat calvarial defect model for experimentation regarding bone regeneration by evaluating the association between diabetes duration and bone healing capacity through histological and radiographic analyses. Methods: Experimental diabetes was induced in 50 of 60 rats by an STZ injection. The rats were divided into 5 groups, including a control group (group 1), according to diabetes durations of 0, 2, 4, 6, and 8 weeks, respectively. Eighteen rats survived: 4 in group 1, 4 in group 2, 4 in group 3, 5 in group 4, and 1 in group 5. Calvarial defects were created at 0, 2, 4, 6, and 8 weeks after STZ injection in groups 1-5. Cone-beam computed tomography scanning was performed at baseline and at 5 and 7 weeks after surgery. The rats were sacrificed 7 weeks after surgery, followed by histological evaluation. Results: The voxel gray values (VGVs) of group 1 and group 2 increased, whereas the VGVs of group 3 and group 4 decreased starting 5 weeks after surgery, although this trend did not reach statistical significance between groups. On the reconstructed 3-dimensional images and based on an analysis of histological features, groups 1 and 2 showed apparent bone regeneration, while groups 3-5 showed very limited bone regeneration. Conclusions: The critical diabetes duration in an STZ-induced diabetic rat calvarial defect model for experimentation regarding bone regeneration was between 2 and 4 weeks. It is suggested that researchers who use STZ-induced diabetic rats wait for more than 2 weeks following diabetes induction before placing implants or conducting bone regeneration studies to allow definite disturbances in bone healing to emerge.

Keywords

References

  1. Zarb GA, Schmitt A. The longitudinal clinical effectiveness of osseointegrated dental implants: the Toronto study. Part I: surgical results. J Prosthet Dent 1990;63:451-7. https://doi.org/10.1016/0022-3913(90)90237-7
  2. Dohan Ehrenfest DM, Coelho PG, Kang BS, Sul YT, Albrektsson T. Classification of osseointegrated implant surfaces: materials, chemistry and topography. Trends Biotechnol 2010;28:198-206. https://doi.org/10.1016/j.tibtech.2009.12.003
  3. Neukam FW, Flemmig TFWorking Group 3. Local and systemic conditions potentially compromising osseointegration. Consensus report of Working Group 3. Clin Oral Implants Res 2006;17 Suppl 2:160-2. https://doi.org/10.1111/j.1600-0501.2006.01359.x
  4. Oates TW, Huynh-Ba G, Vargas A, Alexander P, Feine J. A critical review of diabetes, glycemic control, and dental implant therapy. Clin Oral Implants Res 2013;24:117-27. https://doi.org/10.1111/j.1600-0501.2011.02374.x
  5. Albandar JM, Rams TE. Global epidemiology of periodontal diseases: an overview. Periodontol 2000 2002;29:7-10. https://doi.org/10.1034/j.1600-0757.2002.290101.x
  6. D'Aiuto F, Sabbah W, Netuveli G, Donos N, Hingorani AD, Deanfield J, et al. Association of the metabolic syndrome with severe periodontitis in a large U.S. population-based survey. J Clin Endocrinol Metab 2008;93:3989-94. https://doi.org/10.1210/jc.2007-2522
  7. Danaei G, Finucane MM, Lu Y, Singh GM, Cowan MJ, Paciorek CJ, et al. National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2.7 million participants. Lancet 2011;378:31-40. https://doi.org/10.1016/S0140-6736(11)60679-X
  8. Korean Diabeties Association. Diabetes fact sheet in Korea 2016. Seoul: Korean Diabetes Association; 2016.
  9. Khader YS, Dauod AS, El-Qaderi SS, Alkafajei A, Batayha WQ. Periodontal status of diabetics compared with nondiabetics: a meta-analysis. J Diabetes Complications 2006;20:59-68. https://doi.org/10.1016/j.jdiacomp.2005.05.006
  10. Rothwell BR, Richard EL. Diabetes mellitus: medical and dental considerations. Spec Care Dentist 1984;4:58-65. https://doi.org/10.1111/j.1754-4505.1984.tb00148.x
  11. McMahon MM, Bistrian BR. Host defenses and susceptibility to infection in patients with diabetes mellitus. Infect Dis Clin North Am 1995;9:1-9.
  12. Davis PH, Dambrosia JM, Schoenberg BS, Schoenberg DG, Pritchard DA, Lilienfeld AM, et al. Risk factors for ischemic stroke: a prospective study in Rochester, Minnesota. Ann Neurol 1987;22:319-27. https://doi.org/10.1002/ana.410220307
  13. Mankovsky BN, Ziegler D. Stroke in patients with diabetes mellitus. Diabetes Metab Res Rev 2004;20:268-87. https://doi.org/10.1002/dmrr.490
  14. Auwerx J, Dequeker J, Bouillon R, Geusens P, Nijs J. Mineral metabolism and bone mass at peripheral and axial skeleton in diabetes mellitus. Diabetes 1988;37:8-12. https://doi.org/10.2337/diab.37.1.8
  15. Bouillon R, Bex M, Van Herck E, Laureys J, Dooms L, Lesaffre E, et al. Influence of age, sex, and insulin on osteoblast function: osteoblast dysfunction in diabetes mellitus. J Clin Endocrinol Metab 1995;80:1194-202.
  16. Schwartz AV, Sellmeyer DE. Diabetes, fracture, and bone fragility. Curr Osteoporos Rep 2007;5:105-11. https://doi.org/10.1007/s11914-007-0025-x
  17. Siqueira JT, Cavalher-Machado SC, Arana-Chavez VE, Sannomiya P. Bone formation around titanium implants in the rat tibia: role of insulin. Implant Dent 2003;12:242-51. https://doi.org/10.1097/01.ID.0000074440.04609.4F
  18. de Morais JA, Trindade-Suedam IK, Pepato MT, Marcantonio E Jr, Wenzel A, Scaf G. Effect of diabetes mellitus and insulin therapy on bone density around osseointegrated dental implants: a digital subtraction radiography study in rats. Clin Oral Implants Res 2009;20:796-801. https://doi.org/10.1111/j.1600-0501.2009.01716.x
  19. Hasegawa H, Ozawa S, Hashimoto K, Takeichi T, Ogawa T. Type 2 diabetes impairs implant osseointegration capacity in rats. Int J Oral Maxillofac Implants 2008;23:237-46.
  20. Motyl K, McCabe LR. Streptozotocin, type I diabetes severity and bone. Biol Proced Online 2009;11:296-315. https://doi.org/10.1007/s12575-009-9000-5
  21. Takeshita F, Iyama S, Ayukawa Y, Kido MA, Murai K, Suetsugu T. The effects of diabetes on the interface between hydroxyapatite implants and bone in rat tibia. J Periodontol 1997;68:180-5. https://doi.org/10.1902/jop.1997.68.2.180
  22. Takeshita F, Murai K, Iyama S, Ayukawa Y, Suetsugu T. Uncontrolled diabetes hinders bone formation around titanium implants in rat tibiae. A light and fluorescence microscopy, and image processing study. J Periodontol 1998;69:314-20. https://doi.org/10.1902/jop.1998.69.3.314
  23. Nevins ML, Karimbux NY, Weber HP, Giannobile WV, Fiorellini JP. Wound healing around endosseous implants in experimental diabetes. Int J Oral Maxillofac Implants 1998;13:620-9.
  24. Giglio MJ, Giannunzio G, Olmedo D, Guglielmotti MB. Histomorphometric study of bone healing around laminar implants in experimental diabetes. Implant Dent 2000;9:143-9. https://doi.org/10.1097/00008505-200009020-00006
  25. Cooper GM, Mooney MP, Gosain AK, Campbell PG, Losee JE, Huard J. Testing the critical size in calvarial bone defects: revisiting the concept of a critical-size defect. Plast Reconstr Surg 2010;125:1685-92. https://doi.org/10.1097/PRS.0b013e3181cb63a3
  26. Schmitz JP, Hollinger JO. The critical size defect as an experimental model for craniomandibulofacial nonunions. Clin Orthop Relat Res 1986:299-308.
  27. Muzzarelli RL. Chitosan scaffolds for bone regeneration. In: Kim SK, editor. Chitin, chitosan, oligosaccharides and their derivatives. Boca Raton (FL): CRC Press; 2010. p.223-40.
  28. Szkudelski T. The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol Res 2001;50:537-46.
  29. Taylor AM, Sharma AK, Avasthy N, Duguid IG, Blanchard DS, Thomas PK, et al. Inhibition of somatomedin-like activity by serum from streptozotocin-diabetic rats: prevention by insulin treatment and correlation with skeletal growth. Endocrinology 1987;121:1360-5. https://doi.org/10.1210/endo-121-4-1360
  30. Wohaieb SA, Godin DV. Alterations in free radical tissue-defense mechanisms in streptozocin-induced diabetes in rat. Effects of insulin treatment. Diabetes 1987;36:1014-8. https://doi.org/10.2337/diab.36.9.1014
  31. Zhang XF, Tan BK. Effects of an ethanolic extract of Gynura procumbens on serum glucose, cholesterol and triglyceride levels in normal and streptozotocin-induced diabetic rats. Singapore Med J 2000;41:9-13.
  32. Martinez H, Davarpanah M, Missika P, Celletti R, Lazzara R. Optimal implant stabilization in low density bone. Clin Oral Implants Res 2001;12:423-32. https://doi.org/10.1034/j.1600-0501.2001.120501.x
  33. Duckmanton NA, Austin BW, Lechner SK, Klineberg IJ. Imaging for predictable maxillary implants. Int J Prosthodont 1994;7:77-80.
  34. Norton MR, Gamble C. Bone classification: an objective scale of bone density using the computerized tomography scan. Clin Oral Implants Res 2001;12:79-84. https://doi.org/10.1034/j.1600-0501.2001.012001079.x
  35. Parsa A, Ibrahim N, Hassan B, Motroni A, van der Stelt P, Wismeijer D. Reliability of voxel gray values in cone beam computed tomography for preoperative implant planning assessment. Int J Oral Maxillofac Implants 2012;27:1438-42.
  36. Cassetta M, Stefanelli LV, Pacifici A, Pacifici L, Barbato E. How accurate is CBCT in measuring bone density? A comparative CBCT-CT in vitro study. Clin Implant Dent Relat Res 2014;16:471-8. https://doi.org/10.1111/cid.12027
  37. Taylor GW, Burt BA, Becker MP, Genco RJ, Shlossman M. Glycemic control and alveolar bone loss progression in type 2 diabetes. Ann Periodontol 1998;3:30-9. https://doi.org/10.1902/annals.1998.3.1.30
  38. Hajna Z, Szabadfi K, Balla Z, Biro Z, Degrell P, Molnar GA, et al. Modeling long-term diabetes and related complications in rats. J Pharmacol Toxicol Methods 2016;78:1-12. https://doi.org/10.1016/j.vascn.2015.11.003
  39. Shyng YC, Devlin H, Sloan P. The effect of streptozotocin-induced experimental diabetes mellitus on calvarial defect healing and bone turnover in the rat. Int J Oral Maxillofac Surg 2001;30:70-4. https://doi.org/10.1054/ijom.2000.0004
  40. Kwon PT, Rahman SS, Kim DM, Kopman JA, Karimbux NY, Fiorellini JP. Maintenance of osseointegration utilizing insulin therapy in a diabetic rat model. J Periodontol 2005;76:621-6. https://doi.org/10.1902/jop.2005.76.4.621

피인용 문헌

  1. Angiotensin blockade attenuates diabetic nephropathy in hypogonadal adult male rats vol.97, pp.8, 2017, https://doi.org/10.1139/cjpp-2018-0572
  2. The role of estrogen-related receptor α (ERRα) in metabolic adaptations by endurance training in skeletal muscle of streptozotocin-induced diabetic rats vol.17, pp.3, 2017, https://doi.org/10.1007/s11332-020-00714-7