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GEOMETRIC CLASSIFICATION OF ISOMETRIES ACTING

ON HYPERBOLIC 4-SPACE

Youngju Kim

Abstract. An isometry of hyperbolic space can be written as a composi-
tion of the reflection in the isometric sphere and two Euclidean isometries
on the boundary at infinity. The isometric sphere is also used to construct
the Ford fundamental domains for the action of discrete groups of isome-
tries. In this paper, we study the isometric spheres of isometries acting on
hyperbolic 4-space. This is a new phenomenon which occurs in hyperbolic
4-space that the two isometric spheres of a parabolic isometry can inter-
sect transversally. We provide one geometric way to classify isometries of

hyperbolic 4-space using the isometric spheres.

1. Introduction

Hyperbolic (n + 1)-space Hn+1 is the unique complete simply connected
(n+1)-dimensional Riemannian manifold with constant sectional curvature−1.
The upper half space model of Hn+1 is {(x1, . . . , xn+1) ∈ Rn+1 | xn+1 > 0}
with the metric ds = dx

xn+1
. Hyperbolic (n + 1)-space Hn+1 has the boundary

at infinity R̂n = Rn ∪ {∞}. Any isometry of Hn+1 extends continuously to a

Möbius transformation of R̂n and vice-versa. The converse is so-called Poincaré
extension [5, 11]. Thus we identify an isometry of Hn+1 with a Möbius trans-

formation of R̂n. In what follows, we assume for simplicity that all maps are
orientation-preserving.

An isometry of hyperbolic space can be written as a composition of the
reflection in the isometric sphere and two Euclidean isometries on the boundary
at infinity. In this paper, we study the isometric spheres of isometries acting on
hyperbolic 4-space. We observe a new phenomenon which occurs in hyperbolic
4-space that the two isometric spheres of a parabolic isometry can intersect
transversally. However, we realize that the incidence relations of isometric
spheres are not conjugacy invariants in dimension 4. The isometric sphere has
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been used to construct the Ford fundamental domains for the action of discrete
groups of isometries in the classical dimensions 2 and 3 [7, 9, 11]. Thus, these
new phenomena need to be understood well for the study of discrete groups
of isometries acting on hyperbolic 4-space. We here offer the first step in the
direction.

An isometry of hyperbolic space Hn+1 can be represented as a 2× 2 matrix
whose entries are the Clifford numbers Cn−1 satisfying some conditions. The
action of the 2×2 matrix is the usual action of Möbius transformations. This is
a natural generalization of the classical settings, PSL(2,R) and PSL(2,C), via
identifying the real numbers R with the Clifford algebra C0 and the complex
numbers C with the Clifford algebra C1. Note that PSL(2,R) and PSL(2,C) are
the group of isometries of hyperbolic 2-space and 3-space respectively. For the
isometries of hyperbolic 4-space, we use C2 which is also quaternion numbers
for the matrix representations. One advantage of these representations is that it
gives us an automatic extension fromm-dimensional representations to (m+1)-
dimensional representations.

On the boundary at infinity, the isometric sphere of the Möbius transforma-
tion is the set of points where a Möbius transformation acts as a Euclidean

isometry. More precisely, for a Möbius transformation f of R̂3 satisfying
f(∞) 6= ∞ and f(∞) 6= f−1(∞), the isometric sphere If of f is the set of
points where |f ′(x)| = 1. Then the Möbius transformation f can be writ-
ten in the form ψ ◦ τ ◦ σ, where σ is the reflection in the isometric sphere
If of f , τ is the Euclidean reflection in the perpendicular bisector of the line
segment between f−1(∞) and f(∞), and ψ is a Euclidean isometry which
keeps the isometric sphere If−1 of f−1 invariant and fixes f(∞). In fact,
ψ(x) = TAT−1(x), A ∈ O(3) and T (x) = x + f(∞) for any x ∈ R3 [12]. We
call this the isometric sphere decomposition. If f is of the form

(

a b
c d

)

, where
a, b, c and d are quaternions satisfying some conditions (Definition 2.1), the iso-
metric spheres If and If−1 are 2-dimensional spheres of the same radius |c|−1

centered at f−1(∞) = −c−1d and f(∞) = ac−1 respectively in R3 [4].
For any Möbius transformation f =

(

a b
c d

)

∈ PSL(2,C) with c 6= 0, the
trace a + d has information about the incidence relation between isometric
spheres If = S(− d

c
, 1
|c|) and If−1 = S(a

c
, 1
|c|). The incidence relation is enough

information to determine the type of a given hyperbolic isometry, that is, f
is loxodromic if the two isometric spheres If and If−1 are disjoint, parabolic
if they are tangent, and elliptic if they intersect transversally. The trace is a
conjugacy invariant and hence the incidence relation between isometric spheres
is also a conjugacy invariant.

However, since Clifford numbers do not commute in general, the trace of a
Clifford matrix is not a conjugacy invariant. Furthermore, for a Möbius trans-

formation of R̂3, the incidence relations of isometric spheres are not conjugacy
invariants. For example, f =

(

e1 0
e1+e1e2 −e1

)

is a parabolic isometry fixing 0.

The centers of two isometric spheres If and If−1 are f−1(∞) = 1
2 (1− e2) and
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f(∞) = 1
2 (1 + e2). The distance between two centers is d(f−1(∞), f(∞)) = 1,

but the radius of the isometric sphere is 1√
2
. Hence, two isometric spheres If

and If−1 intersect transversally. This is a contrast to lower dimensions where
the two isometric spheres of a parabolic isometry can only intersect tangen-

tially. On the other hand, f is conjugate to g =
(

e1 0
e1e2 −e1

)

by h =
(

1 0
− 1

2
1

)

,

whose two isometric spheres Ig = S(−e2, 1) and Ig−1 = S(e2, 1) are tangent
to each other. It is still true that parabolic or elliptic fixed points are in the
intersection of two isometric spheres.

We summarize our results as follows: Let f = ψτσ be a Möbius transfor-
mation of R̂3 satisfying f(∞) 6= ∞ and f(∞) 6= f−1(∞) where ψτσ be the
isometric sphere decomposition. When the Euclidean isometry ψ is the iden-
tity map, the type of f depends on the incidence relation of the two isometric
spheres If and If−1 .

Theorem 3.2 Let f = τσ ∈ Möb(R̂3) be a Möbius transformation of R̂3

satisfying f(∞) 6= ∞ and f(∞) 6= f−1(∞) where σ is the reflection in the

isometric sphere If of f , τ is the Euclidean reflection in the perpendicular

bisector of the line segment between f−1(∞) and f(∞). Then f is loxodromic

if the two isometric spheres If and If−1 are disjoint; parabolic if If and If−1

are tangent; elliptic if If and If−1 intersect transversally.

If ψ is not the identity map, then ψ fixes a point p in the reflection plane
of τ (p is possibly ∞). We classify f as a non-boundary elliptic if p is in the
interior of the isometric sphere If (Proposition 3.12); a parabolic if p is on the
isometric sphere If (Proposition 3.5, Proposition 3.6); a loxodromic if p is in
the exterior of the isometric sphere If (Proposition 3.4, Proposition 3.10). We
can find the statement in Theorem 3.13.

We summarize the complete classification in Table 1. Finally, we have the
following characterization of parabolic isometries.

Theorem 3.14. Let f = ψτσ ∈ Möb(R̂3) be a Möbius transformation of

R̂3 satisfying f(∞) 6= ∞ and f(∞) 6= f−1(∞) where σ is the reflection in

the isometric sphere If of f , τ is the Euclidean reflection in the perpendicular

bisector of the line segment between f−1(∞) and f(∞), and ψ is a Euclidean

isometry which keeps the isometric sphere If−1 of f−1 invariant and fixes f(∞).
Then f is parabolic if and only if ψ fixes a point in If

⋂

If−1 .

Section 2 will cover more Clifford representations. Section 3 will classify
isometries of hyperbolic 4-space using the isometric sphere decomposition. For
the basics on hyperbolic geometry the reader is referred to Beardon [5], Maskit
[11], Ratcliffe [12] and Wilker [17]; for a Clifford matrix representation, to
Ahlfors [2, 3, 4], Cao-Waterman [6], Hersonsky [8], Tan-Wong-Zhang [13], Wada
[15] and Waterman [16]. The paper represents a portion of my Ph.D. Thesis
[10] completed at the Graduate Center, City University of New York. I am
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Table 1. Classification of f ∈ Isom(H4) with f(∞) 6= ∞.

f = ψτσ, ψ = id

If
⋂

If−1 = ∅ hyperbolic
If

⋂

If−1 = one point strictly parabolic
If ⋔ If−1 = a circle boundary elliptic

f = ψτσ, ψ 6= id and Aψ ∩ τ = {p}
If

⋂

If−1 = ∅ loxodromic
If

⋂

If−1 = {q} p = q screw parabolic
If

⋂

If−1 = {q} p 6= q ⇔ p ∈ Ext(If ) loxodromic
If ⋔ If−1 = C p ∈ C screw parabolic
If ⋔ If−1 = C p ∈ Ext(If ) loxodromic
If ⋔ If−1 = C p ∈ Int(If ) non-boundary elliptic

very grateful to my advisor, Professor Ara Basmajian, for a careful reading of
the manuscript and valuable suggestions.

2. Möbius transformations and Clifford representations

We classify all isometries of hyperbolic space into three types with respect to
their fixed points. If it has a fixed point in Hn+1, then it is elliptic. If it is not
elliptic and has exactly one fixed point on the boundary at infinity R̂n, then it
is parabolic; otherwise it is loxodromic. An elliptic isometry is called boundary

elliptic if it has a fixed point on R̂n; otherwise it is non-boundary elliptic.

On the boundary at infinity R̂n, a parabolic isometry is conjugate to x 7→
Ax + a with A ∈ SO(n), a ∈ Rn \ {0} by a Möbius transformation. If A = I,
then it is called strictly parabolic; otherwise it is screw parabolic. Hyperbolic 4-
space is the lowest dimension hyperbolic space where screw parabolic isometries
appear.

The Clifford algebra Cn−1 is the associative algebra over the real numbers
generated by e1, e2, . . . , en−1 subject to the relations ei

2 = −1 (i = 1, . . . , n−1)
and eiej = −ejei (i 6= j) and no others. The null product of generators is the
real number 1. A Clifford number a ∈ Cn−1 is of the form

∑

aII where the sum
is over all products I = ev1ev2 · · · evp with 1 ≤ v1 < v2 < · · · < vp ≤ n− 1 and

aI ∈ R. The Euclidean norm |a| of a =
∑

aII ∈ Cn−1 is given by |a|2 =
∑

a2I .
We denote by (a)R the real part of a. We can identify C0 with the real numbers
R, C1 with the complex numbers C and C2 with the quaternion numbers. Here
are the three involutions in the Clifford algebra Cn−1:

(1) The main involution a 7→ a′ is obtained by replacing each ei with −ei.
Thus, (ab)′ = a′b′ and (a+ b)′ = a′ + b′.

(2) Reversion a 7→ a∗ is obtained by replacing each ev1ev2 · · · evp with
evpevp−1

· · · ev1 . Therefore, (ab)
∗ = b∗a∗ and (a+ b)∗ = a∗ + b∗.
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(3) Conjugation a 7→ a is the composition of the main involution and
reversion, i.e., a = (a′)∗ = (a∗)′.

A vector is a Clifford number of the form x = x0 + x1e1 + · · ·+ xn−1en−1 ∈
Cn−1 where the xi’s are real numbers. The set of all vectors forms an n-
dimensional subspace which we identify with Rn. For any vector x, x∗ = x and
x = x′. Every non-zero vector x is invertible with x−1 = x

|x|2 . A Clifford group

Γn−1 is a multiplicative group generated by all non-zero vectors of Cn−1. We
note that Γn−1 = Cn−1 − {0} is true for only n = 1, 2, 3.

Definition 2.1. A matrix A =
(

a b
c d

)

is said to be a Clifford matrix if the
following conditions are satisfied:

(1) a, b, c, d ∈ Γn−1 ∪ {0}.
(2) ad∗ − bc∗ = 1.
(3) ab∗, cd∗, c∗a, d∗b ∈ Rn.

A Clifford matrix A has its multiplicative inverse Clifford matrix A−1 =
(

d∗ −b∗

−c∗ a∗

)

. Hence, all Clifford matrices form a group, denoted by SL(Γn−1).

A Clifford matrix A =
(

a b
c d

)

∈ SL(Γn−1) induces a Möbius transformation

of R̂n by Ax = (ax+b)(cx+d)−1 for any vector x = x0+x1e1+· · ·+xn−1en−1 ∈
Rn, and ∞ 7→ ∞ if c = 0 and ∞ 7→ ac−1, −c−1d 7→ ∞ if c 6= 0. Moreover, any
orientation-preserving Möbius transformation can be presented as a Clifford
matrix. Replacing x with x+ xnen, we can automatically extend the action of
A to a Möbius transformation x+xnen 7→ (a(x+xnen)+b)(c(x+xnen)+d)

−1

of R̂n+1. The coefficient of the last generator en of image is xn

|cx+d|2 . This

shows that the extension keeps the upper half-space Hn+1 invariant. In fact,
the quotient group of Clifford matrices SL(Γn−1) by modulo ±I is isomorphic

to a group of Möbius transformations Möb(R̂n).

Lemma 2.2 ([2]). For a, b ∈ Γ2, ab−1 ∈ R3 if and only if a∗b ∈ R3.

Proposition 2.3. (1) For any vector x ∈ R3 and any quaternion a ∈ C2,

ax− xa′ ∈ R3.

(2) For any vector x ∈ R3, xe1e2x = |x|2e1e2.

Proof. Let x = x0 + x1e1 + x2e2 ∈ R3 and a = a0 + a1e1 + a2e2 + a3e1e2 ∈ C2.
Item 1 comes from the following: The coefficient of e1e2-component of ax is

[(a0 + a1e1 + a2e2 + a3e1e2)(x0 + x1e1 + x2e2)]e1e2 = a1x2 − a2x1 + a3x0

which is the same as the coefficient of e1e2-component of xa′.
To show item 2, we compute

xe1e2x = xe1e2(x0 + x1e1 + x2e2) = x(x0e1e2 − x1e1e1e2 − x2e2e1e2)

= x(x0 − x1e1 − x2e2)e1e2 = |x|2e1e2. �

Lemma 2.4 ([6]). If λ = cos θ+ sin θξe1e2 ∈ Γ2 with ξ ∈ R3 and |ξ| = 1, then
ρλ =

(

λ 0
0 λ′

)

is a rotation around ξ by 2θ and hence ρλ ∈ SO(3).
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If A ∈ SL(Γ2) fixes ∞, then A is of the form
(

λ µ

0 λ∗−1

)

for some quaternions

λ and µ.

Theorem 2.5 ([6]). A Möbius transformation
(

λ µ

0 λ∗−1

)

∈ SL(Γ2) is loxo-

dromic if and only if |λ| 6= 1.

If λ is a real number, µ is a vector because λµ∗ ∈ R3 by Definition 2.1.
Hence, we have the following mutually exclusive three cases.

Theorem 2.6 ([6]). A Möbius transformation
(

λ µ

0 λ′

)

∈ SL(Γ2) with |λ| = 1

is strictly parabolic if λ ∈ R, screw parabolic if µ /∈ R3, elliptic otherwise.

3. Classification of isometries

Throughout this section, we assume that f ∈ Möb(R̂3) with f(∞) 6= ∞,
f(∞) 6= f−1(∞) and f = ψ ◦ τ ◦ σ is the isometric sphere decomposition. We
will use the convention that a reflection in a plane (or a sphere) is also its
reflection plane (or a sphere).

Lemma 3.1 ([5]). Let D be an open ball in Rn and f be a Möbius transfor-

mation acting on R̂n. If f(D) ⊂ D, then f is a loxodromic element and has a

fixed point in f(D).

Suppose that two isometric spheres If and If−1 are disjoint. Then f(D) =

ψ ◦ τ ◦ σ(D) ( D, where D is a ball bounded by If−1 . By Lemma 3.1, f is a
loxodromic. Hence, it suffices to see which type f is when two isometric spheres
If and If−1 intersect each other.

First, we consider the case that the Euclidean isometry ψ of the isometric
sphere decomposition of f is the identity map as follows.

Theorem 3.2. Let f = τσ ∈ Möb(R̂3) be a Möbius transformation of R̂3

satisfying f(∞) 6= ∞ and f(∞) 6= f−1(∞) where σ is the reflection in the

isometric sphere If of f , τ is the Euclidean reflection in the perpendicular

bisector of the line segment between f−1(∞) and f(∞). Then f is loxodromic

if the two isometric spheres If and If−1 are disjoint; parabolic if If and If−1

are tangent; elliptic if If and If−1 intersect transversally.

Proof. We note that f = τσ fixes every point in the intersection of the two
isometric spheres If and If−1 . The intersection of If and If−1 is either a circle
or one point. When the intersection is a circle, f is boundary elliptic. If the
intersection is exactly one point, we conjugate f by a Möbius transformation
m which sends the intersection point to a point ∞. Then mfm−1 is the com-
position of two reflections on two parallel Euclidean planes m(τ) and m(σ).
Hence mfm−1 is a Euclidean translation, in other words strictly parabolic and
so is f . �
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From now on, we assume that ψ is not the identity map and the two isometric
spheres If and If−1 intersect each other. Then the intersection of the two
isometric spheres can be again either one point or a circle. In the following
two Propositions 3.4, 3.5, we will show that if the intersection is exactly one
point, f can be either screw parabolic or loxodromic depending on the action
of Euclidean isometry ψ.

Lemma 3.3. Let f =
(

α′ α′−α
α′ α′

)

∈ SL(Γ2) ≤ SL(Γ3) where α ∈ Γ2 is a unit

quaternion satisfying α 6= ±1 and α′ −α 6= 0. Then f has no fixed point in the

upper half-space H4.

Proof. Suppose that f has a fixed point v = x + te3 ∈ H4 where x = x0 +
x1e1 + x2e2 ∈ R3, t is a positive real number and e1, e2 and e3 generate the
Clifford algebra C3.

f(v) = v

⇔ α′(x+ te3) + α′ − α = (x+ te3)α
′(x+ te3) + (x+ te3)α

′

⇔ α′x+ tα′e3 + α′ − α = xα′x+ txα′e3 + tαx′e3 + t2e3α
′e3 + xα′ + tαe3.

Since t2e3α
′e3 = t2αe3

2 = −t2α, we have

(1) α′x+ α′ − α = xα′x− t2α+ xα′

and

tα′e3 = t(xα′ + αx′ + α)e3

⇒ α′ = xα′ + αx′ + α since t 6= 0

⇒ α′ − α = xα′ + αx′.

(2)

From (2), we have x 6= 0 since α′ − α 6= 0. From (2),

α′ − xα′ = α+ αx′ and hence |1− x| = |x′ + 1|.

Therefore, x0 = 0 and hence x′ = −x. We replace α′ − α of equation (1) with
xα′ + αx′ to have the following

α′x+ xα′ + αx′ = xα′x− t2α+ xα′

⇔ α′x− αx = (xα′ − t2αx−1)x

which implies

α′ − α = xα′ − t2αx−1 since x is invertible

= xα′ −
t2

|x|2
αx′ since x 6= 0.

(3)

From (2) and (3),

xα′ + αx′ = xα′ −
t2

|x|2
αx′

⇔ (1 +
t2

|x|2
)αx′ = 0.
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Since 1 + t2

|x|2 6= 0 and α 6= 0, x = 0 which is a contradiction. Therefore, f has

no fixed point in H4. �

ψ

If

 τ
A

σ = If

τ

Aψ

Figure 1. If
⋂

If−1 = one point : loxodromic

Proposition 3.4. Suppose that If and If−1 meet tangentially at a point q in

R3. If ψ does not fix the intersection point q, then f is loxodromic (see Figure

1).

Proof. We may assume that the tangential intersection point q is 0. Then τσ is
strictly parabolic with a fixed point 0. So, it is of the form ( 1 0

c 1 ) for a non-zero
vector c ∈ R3. We may conjugate f = ψτσ by a dilation so that c = 1. Then,
the center f−1(∞) of the isometric sphere If is −1 and the center f(∞) of the
isometric sphere If−1 is 1. Since ψ(x) = TAT−1(x) for some A ∈ O(3) and
T (x) = x+ f(∞) for any x ∈ R3 in the decomposition of f , we have

ψ =

(

1 1
0 1

)(

α 0
0 α′

)(

1 −1
0 1

)

=

(

α α′ − α

0 α′

)

for a unit quaternion α ∈ Γ2 with α 6= ±1. Since the Euclidean isometry ψ
does not fix 0 which is the tangential intersection point of the two isometric
spheres, α′ − α 6= 0.

f = ψτσ =

(

α′ α′ − α

α′ α′

)

.

By Lemma 3.3, f has no fixed point in H4 and hence it has a fixed point u ∈ R̂3,
i.e., α′u + α′ − α = u(α′u + α′). The fixed point u cannot be 0 since ψ does
not fix 0. We conjugate f by a Möbius transformation which sends u to ∞ to

obtain ˜f .

˜f =

(

0 1
−1 u

)(

α′ α′ − α

α′ α′

)(

u −1
1 0

)

=

(

α′u+ α′ −α′

0 α′ − uα′

)

.

Since ˜f ∈ SL(Γ2), (α
′u + α′)(α′ − uα′)∗ = 1. This implies that |α′u + α′| =

|α′||u+1| = |u+1| and |α′−uα′| = |1−u||α′| = |1−u| are simultaneously either
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1 or not. However, they cannot be simultaneously 1 since u 6= 0. Therefore, ˜f

is loxodromic and so is f (see Lemma 2.4). �

Proposition 3.5. Suppose that If and If−1 meet tangentially at a point q in

R3. If ψ fixes the intersection point q, then f is screw parabolic.

Proof. In the proof of Proposition 3.4, suppose that ψ fixes the tangential
intersection point of two isometric spheres, i.e., ψ(0) = 0. Then ψ =

(

α 0
0 α′

)

for
a unit quaternion α = cos θ + sin θe1e2 and hence

f = ψτσ =

(

α 0
0 α′

)(

1 0
c 1

)

=

(

α 0
α′c α′

)

.

Since α′c is not a vector, f is a screw parabolic element (see Theorem 2.6). �

Now, suppose that two isometric spheres If and If−1 intersect transversally
in a circle C ⊂ τ ⊂ R3. Then the rotational axis Aψ of ψ intersects τ at a
point, say p (p might be ∞). If the intersection point p belongs to the circle
C, then f fixes p (See Figure 2). In Proposition 3.6. We will show that in this
case f is screw parabolic When the intersection point p does not belong to the
circle C (See Figure 3), f is loxodromic or elliptic. That will be the last case.

 

σ = If

τ

Aψ
C

p

Figure 2. If ⋔ If−1 = C and τ ∩ Aψ ∈ C: Screw parabolic

Proposition 3.6. Suppose that the two isometric spheres If and If−1 intersect

transversally in a circle C ⊆ τ ⊆ R3. If ψ fixes a point p in C, then f is screw

parabolic (See Figure 2).

Proof. We may assume that p = 0. Then τσ is a boundary elliptic element
which fixes every point in C. In particular, τσ fixes 0, but does not fix ∞.
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If we conjugate τσ by h =
(

0 1
−1 0

)

: 0 7→ ∞, then the conjugation will be a
rotation about a line h(C) which does not pass 0. Hence,

(

0 −1
1 0

)

τσ

(

0 1
−1 0

)

=

(

1 η

0 1

)(

λ 0
0 λ′

)(

1 −η
0 1

)

for a non-zero vector η in R3 and λ = cos θλ+sin θλξe1e2 6∈ R3 for a unit vector
ξ in R3. So we have

(4) τσ =

(

λ′ 0
λη − ηλ′ λ

)

.

Note that λη − ηλ′ is a non-zero vector since τσ fixes C. If the real part
(λ)R = cos θλ of λ is 0, then τσ has order 2 and If−1 = If which means
f(∞) = f−1(∞). Therefore, (λ)R 6= 0.

Let v be a vector τσ(∞) = λ′(λη − ηλ′)−1 ∈ R3 which is the center of If−1 .

Since ψ fixes 0 and v, it is of the form
(

α 0
0 α′

)

, for α = cos θ+ sin θ v
|v|e1e2 with

θ ∈ (0, 2π). Therefore, we have

f = ψτσ =

(

αλ′ 0
α′(λη − ηλ′) α′λ

)

and we can conjugate f to
(

α′λ α′(ηλ′ − λη)
0 αλ′

)

by

(

0 1
−1 0

)

.

Then |α′λ| = 1 since |α| = 1 = |λ|. So we know that it is either parabolic or
elliptic by Theorem 2.4. The (e1e2)

th-coefficient of α′(ηλ′ − λη) is
[(

cos θ + sin θ
v′

|v|
(e1e2)

′

)

(ηλ′ − λη)

]

(e1e2)

=

[

cos θ(ηλ′ − λη)−
sin θ

|v|
λ(ηλ′ − λη)

′−1(e1e2)(ηλ
′ − λη)

]

(e1e2)

since ηλ′ − λη is a non-zero vector,

=

[

−
sin θ

|v||ηλ′ − λη|2
λ(ηλ′ − λη)∗(e1e2)(ηλ

′ − λη)

]

(e1e2)

=

[

−
sin θ

|v|
λ(e1e2)

]

(e1e2)

since xe1e2x = |x|2e1e2 for any vector x (See Proposition 2.3.),

=
sin θ

|v|
(λ)R 6= 0.

Therefore, f is screw parabolic. �
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τ

Aψ

p
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τ

Aψ
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Figure 3. Loxodromic or non-boundary elliptic

Remark 3.7. The key of the above proof is (λ)R 6= 0. It is also true for higher
dimensions. Hence, we can generalize the lemma: in any dimensions n ≥ 3, if
ψ fixes exactly one point in the intersection of the two isometric spheres, then
f is screw parabolic.

Ahlfors shows that f is parabolic if and only if f is Möbius conjugate to a
matrix of the form ( vc 0

c cv ) ∈ SL(Γ2) with v ∈ R3 [4]. Then the two isometric
spheres are S(−v, 1

|c|) and S(v,
1
|c|). The distance between the centers of spheres

is 2|v| = 2
|c| since |vc| = 1. Therefore, the two isometric spheres are tangent.

We have seen that every parabolic element has a normalized parabolic element
in its conjugacy class whose two isometric spheres are tangent. We also have
the following corollary.

Corollary 3.8. Let f be a parabolic element. Then f is strictly parabolic if

and only if the position of the pair of isometric spheres is tangential for any

element of Möb(R̂3) conjugate to f .

The last case is when the intersection point of τ and Aψ does not belong to
the intersection circle of two isometric spheres (see Figure 3). In this case, f
does not fix any points of the intersection If ∩ If−1 . Hence, f is loxodromic
or non-boundary elliptic since a parabolic or elliptic fixed point can only be in
the intersection If ∩ If−1 .

Before this case, we will see a characterization of a Kleinian group generated
by two Möbius transformations. This characterization will not be generalized
into higher dimensions because of the presence of screw parabolic elements.

Lemma 3.9 ([1]). Suppose that α, β and αβ are parabolic, hyperbolic or el-

liptic Möbius transformations acting on H3. If α and β do not share a fixed

point, then they preserve a common hyperbolic plane in H3 and the group 〈α, β〉
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generated by α and β consists of parabolic, hyperbolic or elliptic elements which

preserve this plane.

Let p be the intersection point of τ and Aψ. In particular, suppose that
the fixed point p is a point ∞. Then, there is a 2-dimensional f -invariant
subspace P in R3 which is perpendicular to Aψ and passes through the two
centers of isometric spheres since the axis Aψ is parallel to τ . We can think of

the restriction of f on P as an element of Möb(R̂2). Hence, it is loxodromic
because the two isometric circles intersect at two points and it has a non-trivial
rotation. This idea can be generalized so that f is loxodromic if p belongs to
the exterior of the isometric sphere Ext(If ).

Proposition 3.10. Suppose that the two isometric spheres If and If−1 inter-

sect transversally in a circle C ⊂ τ ⊂ R3 and ψτ fixes a point p ∈ R3. If

p ∈ Ext(If ), then f is loxodromic.

Proof. A Euclidean isometry ψτ can be written as a composition of a rotation
and a reflection with the same fixed point such that the rotational axis and the
reflection plane are orthogonal. Now, without loss of generality we may assume
that the axis Aψ of ψ intersects the plane τ at p in orthogonal.

Since p ∈ Ext(If ), there are three possible cases considering the distance
from the center of isometric sphere If to the plane τ . LetD be the ball bounded

by the sphere σ. When τ and σ are disjoint, ψτ(D) and D are disjoint. Hence,

f(ψτ(D)) ( ψτ(D), which means f is loxodromic (Lemma 3.1). When τ meet

σ tangentially at a point, say q, ψτ(D) and D are disjoint again because ψ
does not fixed the point q. Therefore, f is loxodromic as above.

In the last, suppose that τ intersects If transversally (see Figure 4). When
τ passes the center of If , then f keeps τ invariant and the two half spaces

divided by τ . So, f |τ is conjugate to a Möbius transformation of R̂2. It has
a decomposition whose two isometric sphere have two intersection points and
non-trivial rotation, therefore f |τ is loxodromic and so is f . If τ does not pass
the center, then there is also a unique ball B centered at p, whose boundary
sphere ∂B is orthogonal to σ since p is in Ext(If ) (Figure 4). Then f keeps B

invariant, and hence f is conjugate to a Möbius transformation of R̂2. Since
ψ|B and τσ|B are elliptic and there is no common disc preserved by ψ|B and
τσ|B whose boundary is a circle in ∂B, f |B is loxodromic by Lemma 3.9. �

Example 3.11. Let C be a unit circle centered at 0 in the 〈1, e1〉-plane. An
boundary-elliptic element R which fixes every point on C is of the following
form:

R = mρλm
−1 =

(

1
2 e1

1
2e1 1

)(

λ 0
0 λ

)(

1 −e1
− 1

2e1
1
2

)

=

(

cos θ − sin θe2
− sin θe2 cos θ

)(5)
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σ
Aψ

p
τ

Figure 4. If ⋔ If−1 = C: Loxodromic

Aψ

σ

pτ

Figure 5. If ⋔ If−1 = C: Non-boundary elliptic

where λ = cos θ + sin θe1e2, θ ∈ (0, π) and m is a Möbius transformation with
m(0) = e1, m(2) = 1 and m(∞) = −e1.

Proposition 3.12. Suppose that the two isometric spheres If and If−1 inter-

sect transversally in a circle C ⊂ τ ⊂ R3 and ψτ fixes a point p ∈ R3. If

p ∈ Int(If ), then f is non-boundary elliptic.

Proof. Without loss of generality we may assume that the axis Aψ of ψ inter-
sects the plane τ at p in orthogonal and τ is the plane generated by 1 and e1
(see Figure 5). Let C be the circle of the intersection τ ∩ σ. We may assume
that C is the unit circle centered at the origin in the plane 〈1, e1〉, and p has a
coordinate (t, 0, 0) for t ∈ (0, 1) on the real axis. The angle between τ and σ
is in (0, π2 ], say θ. Then τσ is an elliptic element whose fixed point set is the
circle C and rotation angle is 2θ. Thus, τσ is of the form (5). Since the axis of
ψ is orthogonal to τ and passes p = (t, 0, 0), ψ is of the following form:

(6)

(

1 t

0 1

)(

α 0
0 α′

)(

1 −t
0 1

)

=

(

α −2t sin τe1
0 α′

)

,

where α = cos τ + sin τe2(e1e2) and τ ∈ (0, π).

f = ψτσ =

(

α −2t sin τe1
0 α′

)(

cos θ − sin θe2
− sin θe2 cos θ

)

=

(

cos θα+ 2t sin θ sin τe1e2 − sin θαe2 − 2t cos θ sin τe1
− sin θα′e2 cos θα′

)

,
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where α = cos τ + sin τe1, τ ∈ (0, π), θ ∈ (0, π2 ] and 0 < t < 1.

Suppose that f fixes a point in R̂3. That is

(cos θα+ 2t sin θ sin τe1e2)u− sin θαe2 − 2t cos θ sin τe1

= − sin θuα′e2u+ cos θuα′(7)

for a vector u = u0 + u1e1 + u2e2 ∈ R3 (clearly, u 6= ∞). The e1e2-coefficient
of (7) is

2t sin θ sin τu0 − sin θ sin τ − sin θ sin τ |u|2 = 0.

Since sin θ 6= 0 and sin τ 6= 0 for θ ∈ (0, π2 ] and τ ∈ (0, π),

2tu0 = 1 + |u|2

which implies u0 > 0 and hence,

2t =
1 + u20 + u21 + u22

u0
≥ u0 +

1 + u21 + u22
u0

≥ 2
√

1 + u21 + u22 ≥ 2.

Thus, t ≥ 1 which is a contradiction. Therefore, f has no fixed points in
R̂3. �

We have seen:

Theorem 3.13. Let f = ψτσ ∈ Möb(R̂3) be a Möbius transformation of R̂3

satisfying f(∞) 6= ∞ and f(∞) 6= f−1(∞) where σ is the reflection in the

isometric sphere If of f , τ is the Euclidean reflection in the perpendicular

bisector of the line segment between f−1(∞) and f(∞), and ψ is a Euclidean

isometry which keeps the isometric sphere If−1 of f−1 invariant and fixes f(∞).
Suppose ψ is not the identity map and fixes a point p in the reflection plane of τ

(p is possibly ∞). Then a Möbius transformation f is non-boundary elliptic if

p is in the interior of the isometric sphere If ; parabolic if p is on the isometric

sphere If ; loxodromic if p is in the exterior of the isometric sphere If (including
when p = ∞).

We also have the following characterization of parabolic isometries:

Theorem 3.14. Let f = ψτσ ∈ Möb(R̂3) be a Möbius transformation of R̂3

satisfying f(∞) 6= ∞ and f(∞) 6= f−1(∞) where σ is the reflection in the

isometric sphere If of f , τ is the Euclidean reflection in the perpendicular

bisector of the line segment between f−1(∞) and f(∞), and ψ is a Euclidean

isometry which keeps the isometric sphere If−1 of f−1 invariant and fixes f(∞).
Then f is parabolic if and only if ψ fixes a point in If

⋂

If−1 .

Corollary 3.15. Let f = ψτσ be elliptic. Then f is boundary elliptic if and

only if ψ is the identity map.
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