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HOPF’S BOUNDARY TYPE BEHAVIOR FOR AN

INTERFACE PROBLEM

Maryam Beygmohammadi and Guido Sweers

Abstract. Interface problem here refers to a second order elliptic prob-

lem with a discontinuous coefficient for the second order derivatives. For
the corresponding boundary value problem, the maximum principle still

holds but Hopf’s boundary point lemma may fail. We will give an opti-
mal power type estimate that replaces Hopf’s lemma at those boundary

points, where this coefficient jumps.

1. Introduction

Before coming to the interface problem it will be beneficial to recall the
maximum principle type results in the classical case. Let Ω ⊂ Rn be a bounded
domain and let

L = −
n∑

i,j=1

∂

∂xi
aij (x)

∂

∂xj
+

n∑

i=1

bi (x)
∂

∂xi

be a second order elliptic operator, i.e.,
∑
i,j aijξiξj ≥ c |ξ|2 for some c > 0

and all ξ ∈ Rn, and with aij , bi sufficiently nice. If u is a twice differentiable
solution of the boundary value problem

(1)

{
Lu ≥ 0 in Ω,
u ≥ 0 on ∂Ω,

then either u ≡ 0 or u is strictly positive in the interior of Ω. For x0 ∈ ∂Ω with
u (x0) = 0 and when an interior sphere condition is present, the closely related
boundary point lemma by Hopf [9] states that either u ≡ 0 or u satisfies

−∂u
∂ν

(x0) > 0.

Here ν is the outward normal at x0. Hopf’s lemma holds at those boundary
points where all coefficients aij and bi are continuous, see [5, Section 2.3].

The question that comes up, is, what happens if the coefficients aij and bi
are not continuous. The maximum principle still holds true if these coefficients
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are just bounded (see [6, Theorem 8.1]), but that is not sufficient for Hopf’s
lemma as we will show.

A boundary value problem such as (1) with discontinuous coefficients ap-
pears when studying a so-called interface or transmission problem. See for
example [12]. Such a problem is modeled formally by

(2)

{
−∇ · σ∇u = σf in Ω,

u = 0 on ∂Ω,

where σ is piecewise constant with jumps. Obviously, the solution of (2) can’t
be considered in the classical sense and instead one considers weak solutions,
that is, functions u ∈ W̊ 1,2 (Ω) satisfying

(3)

∫

Ω

σ (∇u · ∇ϕ− fϕ) dx = 0 for all ϕ ∈ W̊ 1,2 (Ω)

with W̊ 1,2 (Ω) := C∞0 (Ω)
‖·‖W1,2

. Notice that (3) is the Euler-Lagrange equa-
tion for

(4) J (u) =

∫

Ω

σ
(

1
2 |∇u|

2 − fu
)
dx.

The reason, that we put σ not only just for the gradient term, but also for f , is
that it simplifies some notations and doesn’t alter the problem for f ∈ L2 (Ω).

We will study what remains of Hopf’s boundary point lemma for the solution
of (2) at the boundary points in the case that σ is not continuous but a piecewise
constant function with a discontinuity at such a boundary point. We assume
that σ is constant on subdomains Ωi with relatively nice boundaries. See Fig.
1. The precise condition follows.

Notice that (3) is the Euler-Lagrange equation for

J (u) =

∫

Ω
σ
(

1
2 |∇u|

2 − fu
)
dx. (4)

The reason that we put σ not just for the gradient term but also for f simplifies some
notations and doesn’t alter the problem for f ∈ L2 (Ω).

We will study what remains of Hopf’s boundary point Lemma for the solution of (2)
at the boundary points where several subdomains Ωi meet. See Fig. 1.

Figure 1: A smooth domain that contains three subdomains and three singular points.

2 The setting

The domain Ω ⊂ R2 is supposed to be bounded and smooth and consisting of subdomains
Ωi with i ∈ {1, . . . , k}, i.e. Ω =

⋃k
i=1 Ωi and Ωi ∩ Ωj = ∅ whenever i 6= j. The weight

function σ : Ω→ R is a piecewise constant positive function defined by

σ(x) = σi for x ∈ Ωi with σi ∈ R+.

For such σ the problem of finding a minimizer u ∈ W̊ 1,2 (Ω) for the energy functional (4)
with given f ∈ L2 (Ω) leads to the following set of equations:





−∆ui = f in Ωi,

ui = uj

σi
∂ui
∂νi

= −σj ∂uj∂νj

}
on ∂Ωi ∩ ∂Ωj ,

ui = 0 on ∂Ωi ∩ ∂Ω,

(5)

where ui = u|Ωi and νi is the outward normal with respect to Ωi.
The existence and uniqueness of the weak solution u ∈ W̊ 1,2 (Ω) satisfying (3) is

guaranteed by the Riesz representation theorem. Assuming that the subdomains meet
in cone-like way, Nicaise and Sändig [15] could show that ui ∈ W 2,2 (Ωi). Moreover, if
one considers x0 ∈ ∂Ω ∩ ∂Ωi ∩ ∂Ωj for some i 6= j, that is, a boundary point where at
least two subdomains meet, then, although the solution u has a non-smooth behavior in
a neighborhood of x0, this behavior is similar as for corners studied by Kondratiev [8].
Indeed, Nicaise and Sändig [15] found that for f ∈ L2(Ω) the solution u has the following
decomposition near such x0 = 0:

u = uf + η
∑

0<µk<1

cj |x|
√
µkφk

(
x
|x|

)
. (6)

2

Figure 1. A domain Ω with three subdomains and three sin-
gular points.
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2. The setting

We consider domains Ω ⊂ R2 that consist of subdomains Ωi with i ∈
{1, . . . , k}, i.e., Ω =

⋃k
i=1 Ωi and Ωi ∩ Ωj = ∅ whenever i 6= j. These subdo-

mains, and hence also Ω, have a smooth boundary with the possible exception
of finitely many corners. As usual a domain means an open and connected
set. The weight function σ : Ω→ R+ is a piecewise constant positive function
defined by

(5) σ(x) = σi for x ∈ Ωi with σi ∈ R+.

The existence and uniqueness of the weak solution u ∈ W̊ 1,2 (Ω) satisfying
(3) is guaranteed by the Riesz representation theorem. Regularity questions
near ∂Ωi ∩ ∂Ωj but away from the boundary ∂Ω have already been stated
in [17]. Assuming that the subdomains meet at ∂Ω in cone-like way, Nicaise
and Sändig [16] could show that ui := u|Ωi

can be written as ui = ũi + hi,

where ũi ∈ W 2,2 (Ωi) and hi is harmonic on Ωi. Moreover, if one considers
p0 ∈ ∂Ω ∩ ∂Ωi ∩ ∂Ωj for some i 6= j, that is, a boundary point where at
least two subdomains meet, then, although the solution u has a non-smooth
behaviour in a neighborhood of p0, this behaviour is similar as for corners
studied by Kondratiev [10]. Indeed, in [16] one finds that for f ∈ L2(Ω) the
solution u has the following decomposition near such p0 = 0:

(6) u (x) = ũ (x) + η (|x|)
∑

0<µj<1

cj |x|
√
µjφj

(
x
|x|

)
.

Here ũ|Ωi
∈ W 2,2 (Ωi), η is an appropriate radially symmetric smooth cut-off

function equal to 1 in a neighborhood of p0 = 0, the cj are real constants and
(µj , φj) are eigenvalues/eigenfunctions of a weighted Laplace Beltrami opera-
tor, with the weight depending on σ, under homogeneous Dirichlet boundary
conditions on the red circles in Figure 1 scaled to unity, that is, on

(7) 1
ρΩ ∩ ∂B1 (0) :=

{
y ∈ R2; |y| = 1 and ρy ∈ Ω

}

for some ρ > 0. Indeed, x 7→ |x|
√
µj φj

(
x
|x|

)
are singular functions independent

of f , which are harmonic on Ωi ∩ Bρ (0) for all i ∈ {1, . . . , k}. For polygonal
interface problems see also [15].

For σ as in (5) the problem of finding a minimizer u ∈ W̊ 1,2 (Ω) for the energy
functional (4) with given f ∈ L2 (Ω) leads to the following set of equations:

(8)





−∆ui = f in Ωi,

ui = uj
σi
∂ui

∂νi
= −σj ∂uj

∂νj

}
on ∂Ωi ∩ ∂Ωj ,

ui = 0 on ∂Ωi ∩ ∂Ω,
for i, j ∈ {1, . . . , k} with i 6= j,
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where ui = u|Ωi
and νi is the outward normal with respect to Ωi. We refer to

Appendix C in order to see that ũ from (6) satisfies (8). The power type part
in (6) satisfies the conditions on ∂Ωi ∩ ∂Ωj in (8) by construction.

We will restrict ourselves mainly to the 2-dimensional case. Regularity for
the 2-dimensional case was also focused upon by Mercier in [14]. Moreover, the
problem was studied in [3], but it seems that this paper did not consider the
appropriate power type functions in the decomposition as in (6).

When considering two-dimensional domains with multiple subdomains and
such that ∂Ωi and ∂Ωj meet at p0 ∈ ∂Ω, it seems quite natural to assume that
near such a point p0 the subdomains look like sectors. Since this simplifies the
arguments we will indeed make such an assumption, that is, after translation
and rotation, we assume the subdomains to be as follows.

Condition 1. Let 0 = θ0 < θ1 < · · · < θk < 2π. The domain Ω ⊂ R2 is such
that for some ρ > 0 (and ρ < 1 for technical reasons)

(9)
(

1
2ρΩ

)
∩B1 (0) = C := {(r, θ); 0 < r < 1, 0 < θ < θk} ,

with the subdomains Ωi, i = 1, 2, . . . , k of Ω such that

(10)
(

1
2ρΩi

)
∩B1 (0) = Ci := {(r, θ); 0 < r < 1, θi−1 < θ < θi} .

We write

(11) Γi = {(r, θ); 0 < r < 1, θ = θi}.
Like in (7) we set 1

2ρΩ(i) :=
{
y ∈ R2; 2ρy ∈ Ω(i)

}
. Condition 1 is illustrated

in Fig. 2.

0

C1

C2

C3

Figure 2. The domain Ω and its subdomains are shaped like
cones near the vertex p0 = 0.

Remark 1.1. A domain Ω will in general have several points where interfaces
meet at the boundary and we will call these {p0 = 0, p1, . . . , p`}. Since our
result is mainly based on a local analysis, it is sufficient to consider only the
behaviour near p0 = 0. The remaining pi with i ∈ {1, . . . , `} may even lie in
the interior of Ω.
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Assuming that interfaces meet at p0 = 0 ∈ ∂Ω, a rescaling of the problem
in (8) leads to the following boundary value on a sector C as in (9):

(12)





−∆ui = fi := f |Ci
in Ci, i = 1, . . . , k,

u1 = 0 on Γ0,
ui = ui+1

σi
∂ui

∂θ = σi+1
∂ui+1

∂θ

}
on Γi, i = 1, . . . , k − 1,

uk = 0 on Γk,
ui = w on ∂C ∩ ∂B1(0),

where w is some given nonnegative function. The fourth line in (12) displays
the jump conditions.

The problem in (12) is closely related to the study of elliptic equations near
corners as can be found in [7], [8], [10], [11], [13]. In [2, Theorem 6] a Hopf’s type
estimate near a corner for the solution of a Poisson problem can be found. The
present proof follows similar steps but since additional technicalities appear,
we will give the details.

3. Main result

For the sake of simple statements we will use the following notation.

Notation 2. Let u, v : A 7→ R+ be two positive functions. We write ‘v (x) �
u (x) for x ∈ A’, if there exists a constant c > 0 such that v (x) ≤ cu (x) for all
x ∈ A. If v (x) � u (x) and u (x) � v (x) for x ∈ A, we write ‘v (x) ' u (x) for
x ∈ A’.

Moreover, we will use the function d : Ω→ R+ that denotes the distance to
the boundary:

d (x) = d (x, ∂Ω) := inf {|x− x∗| ;x∗ ∈ ∂Ω} .
Assuming Condition 1 and defining σ̃ (θ) = σ (ρθ), a crucial role will be played
by

(13) µ1 = inf
φ∈W̊ 1,2(0,θk)

∫ θk
0
σ̃ (θ) φ′ (θ)

2
dθ

∫ θk
0
σ̃ (θ) φ (θ)

2
dθ
.

The number µ1 is the first eigenvalue of a weighted Laplace-Beltrami operator
on ∂C ∩ ∂B1 (0) under Dirichlet boundary conditions and is strictly positive.
See Appendix A.

Theorem 3. Suppose that Ω ⊆ R2 is as in Condition 1 and take C and Ci
from there. Assume that u ∈ W̊ 1,2 (Ω) satisfies the boundary value problem (8)
and 0 � f ∈W−1,2 (Ω)∩C

(
Ω̄ \ {0}

)
. Let µ1 be as in (13). Then the following

results hold.

a) For all x ∈ Ω ∩Bρ (0) one finds

(14) |x|
√
µ1−1

d (x) � u(x).
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b) Moreover, let m > −2 and suppose that

(15) f (x) � |x|m for x ∈ Ω,

and for Ω′ = {(r cos θ, r sin θ); 0 < r < r0, θa < θ < θb} ⊂ Ω, with some
r0 > 0 and 0 ≤ θa < θb ≤ θk,

(16) |x|m � f (x) for x ∈ Ω′.

Then we find:
(1) if m+ 2 <

√
µ1, then

(17) u(x) ' |x|m+1
d (x) for x ∈ Ω ∩Bρ (0) ,

(2) if m+ 2 =
√
µ1, then

(18) u(x) ' |x|
√
µ1−1

ln
(

1
|x|

)
d (x) for x ∈ Ω ∩Bρ (0) .

(3) if m+ 2 >
√
µ1, then

(19) u(x) ' |x|
√
µ1−1

d (x) for x ∈ Ω ∩Bρ (0) .

Remark 3.1. The items (17)–(19) contain both estimates from below and from
above. In fact these estimates are independent and only combined in one
equivalence relation in order to show the sharpness of the estimate. From the
proof one might see, that (15) yields the estimates from above and (16) the
ones from below.

Remark 3.2. The functions x 7→ |x|s, x 7→ |x|s−1
d (x) and x 7→ |x|s−1

ln
(

1
|x|

)

d (x) lie in W 1,2 (Ω) for s > 0. Since µ1 > 0 and m + 2 > 0, the right hand
sides in (17-19) indeed are in W 1,2 (Ω).

Remark 3.3. If Ω consists near 0 of just two subdomains Ω1 and Ω2 such that
after a rotation we find that

Ω1 ∩Bρ (0) = {(x1, x2) ;x1 > 0 and x2 > 0} ∩Bρ (0) ,

Ω2 ∩Bρ (0) = {(x1, x2) ;x1 < 0 and x2 > 0} ∩Bρ (0) ,

i.e., ∂Ω is straight with Γ1 perpendicular, then µ1 = 1 and (14) gives us the
classical Hopf lemma even if σ1 and σ2 are different. For any other angle there
is in general no linear growth near the boundary point. See Example 1 in
Appendix D.

Proof. First let us remark that a maximum principle like Theorem 5 (see Ap-

pendix B) implies that u ≥ 0 on Ω. Since ui ∈ W 2,p
(
Ωi \

⋃`
j=0Bε (pj)

)
for

all p <∞, these ui are C1 away from the pj ’s. The strong maximum principle
implies that on each Ωi one either has ui ≡ 0 or ui > 0. The jump condition
for u at interior layer points shows

(20) σi
∂

∂νi
ui + σj

∂

∂νj
uj = 0 on ∂Ωi ∩ ∂Ωj ∩ Ω,
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which means that for x̃ ∈ ∂Ωi∩∂Ωj ∩Ω we find ∂
∂νi

ui (x̃) ≥ 0 or ∂
∂νj

uj (x̃) ≥ 0.

If ∂
∂νi

ui (x̃) ≥ 0 and ui (x̃) = 0 holds for some x̃ ∈ ∂Ωi ∩ ∂Ωj ∩ Ω, then one
obtains by Hopf’s boundary point lemma that ui ≡ 0 on Ωi. Moving from Ωi
to a neighbouring Ωj the condition in (20) implies that uj ≡ 0 on Ωj and hence
by continuation u ≡ 0 on Ω, a contradiction. So we obtain u > 0 in Ω.

With the classical Hopf’s boundary point lemma at x ∈ ∂Ω\{p0, . . . , p`} we
find that for each ε > 0 there exists cε > 0 such that

u (x) ≥ cεd (x) for x ∈ Ω \
⋃̀

j=0

Bε (pj) .

By regularity results we find the reverse inequality on Ω\⋃`j=0Bε (pj) for each
ε > 0. Note that the constants in the estimate do depend on ε > 0 and might
blow up when taking ε ↓ 0.

We are left with proving the estimates near pj and to do so we restrict
ourselves, as stated in the theorem, to the neighborhood of the singular point
at 0, where after a scaling the problem appears as in (12) and where w (x) on
∂C ∩ ∂B1 (0) is a function equivalent the tangential distance along ∂B1 (0) to
ρ−1∂Ω.

In a similar way as in [2], we construct upper and lower barrier functions
for the solution of (12) with the right hand side f ' |x|m. The maximum
principle is used to show that the specially tailored barrier functions will give
the estimates. The maximum principle that we use, is for functions as in (6).
Such functions are sufficiently regular to have a well-defined trace on ∂Ω and
∂Ωi. Since ũ|Ci

∈W 2,2 (Ci) holds, the power type solutions are C1
piecewise as a

function of θ. Hence one may integrate by parts and use a maximum principle
as in Theorem 5 (see Appendix B).

Let φ1,σ be the function in Lemma 4 (see Appendix A) normalised by

max {φ1,σ (θ) ; 0 < θ < θk} = 1.

Defining Φ : C → R by

Φ (r cos θ, r sin θ) = r
√
µ1φ1,σ (θ)

and writing Φi = Φ|Ci , we find that Φ satisfies

(21)





−∆Φi = 0 in Ci with i = 1, . . . , k,
Φ1 = 0 on Γ0,
Φi = Φi+1

σi
∂
∂θΦi = σi+1

∂
∂θΦi+1

}
on Γi with i = 1, . . . , k − 1,

Φk = 0 on Γk,
Φi = φ1,σ on ∂C ∩ ∂B1(0).
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Since φ1,σ satisfies (27) and since d (x, ∂Ω) = |x| d
(
x
|x| , ∂Ω

)
for x ∈ Ω∩Bρ (0),

one finds that

Φ (x) ' |x|
√
µ1 d

(
x

|x| ,Γ0 ∪ Γk

)
' |x|

√
µ1 d

(
x

|x| ,
1

ρ
∂Ω

)
' |x|

√
µ1−1

d (x, ∂Ω) .

Indeed, the equivalences follow from
(

1
ρΩ
)
∩B2 (0) = 2C and by scaling. In the

remainder the Maximum Principle as in Theorem 5 is used. In the following
we will use auxiliary functions u`a and u`b with ` ∈ {1, 2, 3}, which all are in
W 1,2 (C).

(1) Let m+ 2 <
√
µ1.

• Estimate from above: Set υκ the solution of

(22)





−υ′′κ,i(θ) + κυκ,i(θ) = 1 for θ ∈ [θi−1, θi] and i ∈ {1, . . . , k} ,
υκ,i(θi) = υκ,i+1(θi) i = 1, . . . , k − 1,

σiυ
′
κ,i(θi) = σi+1υ

′
κ,i+1(θi+1) i = 1, . . . , k − 1,

υκ(0) = υκ(θk) = 0,

with κ = −(m + 2)2 and the same σi as in (12). Since κ < µ1,
one finds that such a solution υκ exists uniquely, is positive and
furthermore, we find

υκ ' φ1,σ.

Taking u1a := |x|m+2υκ

(
x
|x|

)
we observe that u1a satisfies the

following boundary value problem:





−∆u1a|Ci
= |x|m in Ci, i = 1, . . . , k,

u1a,i = u1a,i+1 on Γi, i = 1, . . . , k − 1,

σi
∂u1a,i

∂θ = σi+1
∂u1a,i+1

∂θ on Γi, i = 1, . . . , k − 1,
u1a ' φ1,σ on ∂C ∩ ∂B1(0),
u1a,1 = 0 on Γ0,
u1a,k = 0 on Γk.

Since f � |x|m on Ω, it follows by the maximum principle that

u � u1a ' |x|m+2φ1,σ

(
x
|x|

)
.

• Estimate from below: We take κ as before and we let ωκ be
the solution of

(23)



−ω′′κ,i(θ) + κωκ,i(θ) = χ(θa,θb)(θ) for θ ∈ [θi−1, θi] and i ∈ {1, . . . , k} ,
ωκ,i(θi) = ωκ,i+1(θi) i = 1, . . . , k − 1,

σiω
′
κ,i(θi) = σi+1ω

′
κ,i+1(θi+1) i = 1, . . . , k − 1,

ωκ(0) = ωκ(θk) = 0.
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Here χA is the characteristic function for a set A. Similarly as in
the previous case, we find 0 ≤ ωκ ' φ1,σ in (0, θk). By setting

u1b := |x|m+2ωκ

(
x

|x|

)
,

one finds that u1b satisfies




−∆u1b|Ci
= |x|mχ(θa,θb)

(
x
|x|

)
in Ci, i = 1, . . . , k,

u1b,i = u1b,i+1 on Γi, i = 1, . . . , k − 1,

σi
∂u1b,i

∂θ = σi+1
∂u1b,i+1

∂θ on Γi, i = 1, . . . , k − 1,
u1b ' φ1,σ on ∂C ∩ ∂B1(0),
u1b,1 = 0 on Γ0,
u1b,k = 0 on Γk.

Thus, by the maximum principle we find |x|m+2φ1,σ

(
x
|x|

)
' u1b �

u.
(2) Let m+ 2 =

√
µ1.

• Estimate from above: We set υ0 the solution of

(24)





−υ′′0,i(θ) = 1 for θ ∈ [θi−1, θi] and i ∈ {1, . . . , k} ,
υ0,i(θi) = υ0,i+1(θi) i = 1, . . . , k − 1,

σiυ
′
0,i(θi) = σi+1υ

′
0,i+1(θi+1) i = 1, . . . , k − 1,

υ0(0) = υ0(θk) = 0,

which is simply the solution of (22) with κ = 0. Since υ0 ' φ1,σ

in (0, θk), we can choose a positive constant γ such that

γ(m+ 2)υ0(θ) ≤ 2φ1,σ(θ) for all θ ∈ (0, θk).

Then by taking

u2a(x) := |x|m+2 ln

(
1

|x|

)
φ1,σ

(
x

|x|

)
+ γ|x|m+2υ0

(
x

|x|

)

one finds that u2a satisfies

−∆u2a = |x|m
(

2(m+ 2)φ1,σ

(
x

|x|

)
− γ(m+ 2)2υ0

(
x

|x|

)
+ γ

)
,

which implies




−∆u2a|Ci
' |x|m in Ci, i = 1, . . . , k,

u2a,i = u2a,i+1 on Γi, i = 1, . . . , k − 1,

σi
∂u2a,i

∂θ = σi+1
∂u2a,i+1

∂θ on Γi, i = 1, . . . , k − 1,
u2a ' φ1,σ on ∂C ∩ ∂B1(0),
u2a,1 = 0 on Γ0,
u2a,k = 0 on Γk.

We observe that −∆u = f(x) ≤ −∆u2a in Ω and u ' u2a on ∂Ω.
By the maximum principle we get the following estimate from
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above:

u � u2a ' |x|
√
µ1 ln

(
1
|x|

)
φ1,σ

(
x
|x|

)
.

• Estimate from below: For getting a lower barrier for u in this
case, we set

u2b := ζ|x|m+2 ln

(
1

|x|

)
φ1,σ

(
x

|x|

)
+ |x|m+2ω0

(
x

|x|

)
,

where ω0 is the solution of (23) with κ = 0 and where ζ > 0 is
such that

2ζφ1,σ(θ) ≤ (m+ 2)ω0(θ) for all θ ∈ (0, θk).

Then u2b satisfies the following equation for all x ∈ Ci

−∆u2b|Ci
= |x|mχ(θa,θb)

(
x

|x|

)
+2(m+2)ζ|x|mφ1,σ

(
x

|x|

)
−(m+2)2|x|mω0

(
x

|x|

)
.

Hence u2b is a bound from below since




−∆u2b|Ci
� |x|mχ(θa,θb)

(
x
|x|

)
in Ci, i = 1, . . . , k,

u2b,i = u2b,i+1 on Γi, i = 1, . . . , k − 1,

σi
∂u2b,i

∂θ = σi+1
∂u2b,i+1

∂θ on Γi, i = 1, . . . , k − 1,
u2b ' φ1,σ on ∂C ∩ ∂B1(0),
u2b,1 = 0 on Γ0,
u2b,k = 0 on Γk,

which implies by the maximum principle that u2b � u.
(3) Let m+ 2 >

√
µ1.

• Estimate from above: An upper barrier function for u in this
case will be

u3a :=
(
|x|
√
µ1 − |x|m+2

)
φ1,σ

(
x

|x|

)
+ γ|x|m+2υ0

(
x

|x|

)
,

where υ0 is the solution of (24) and γ > 0 satisfies

γ(m+ 2)2υ0(θ) ≤
(
(m+ 2)2 − µ1

)
φ1,σ(θ).

Then u3a satisfies the following equation:

−∆u3a = |x|m
(
(m+ 2)2 − µ1

)
φ1,σ

(
x

|x|

)
− |x|mγ(m+ 2)2υ0

(
x

|x|

)
+ γ|x|m

for x ∈ Ω. So one finds that



−∆u3a|Ci
' |x|m in Ci, i = 1, . . . , k,

u3a,i = u3a,i+1 on Γi, i = 1, . . . , k − 1,

σi
∂u3a,i

∂θ = σi+1
∂u3a,i+1

∂θ on Γi, i = 1, . . . , k − 1,
u3a ' φ1,σ on ∂C ∩ ∂B1(0),
u3a,1 = 0 on Γ0,
u3a,k = 0 on Γk,
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and this implies that u � u3a ' |x|
√
µ1φ1,σ

(
x
|x|

)
.

• Estimate from below: The estimate from below one directly
finds by the harmonic function

u3b := |x|
√
µ1φ1,σ

(
x

|x|

)
,

which satisfies



−∆u3b|Ci
= 0 in Ci, i = 1, . . . , k,

u3b,i = u3b,i+1 on Γi, i = 1, . . . , k − 1,

σi
∂u3b,i

∂θ = σi+1
∂u3b,i+1

∂θ on Γi, i = 1, . . . , k − 1,
u3b ' φ1,σ on ∂C ∩ ∂B1(0),
u3b,1 = 0 on Γ0,
u3b,k = 0 on Γk.

Again the maximum principle implies u3b � u in Ω.

Comparing with the results in [2, Theorem 6], we observe that the solution
of the problem (12) has the same form as the solution of the Poisson problem
near a conical point but with a different type of regularity. �

Appendix A. Existence and positivity of the first eigenfunction

Concerning the first eigenfunction one may have look at [4]. For positivity
see the result in [4, Volume I, Chapter VI, §6 (page 452)], which became known
as Courant’s Nodal Domain Theorem. In [4] however one hardly finds the pre-
cise conditions for the coefficients. A place with sufficiently general conditions
on the coefficients, which allow our piecewise constant σ, is [6, Section 8.12].
The eigenfunction, that we are interested in, is the first eigenfunction φ for
the weighted Laplace-Beltrami operator on the intersection of Ω and the unit
sphere. This function is used in the power type functions |x|a φ (x/ |x|), which
are defined near a point, where boundary and interface meet.

In our 2-dimensional case the Rayleigh quotient, for which the first eigen-
function is a minimizer, is as follows. With 0 = θ0 < θ1 < · · · < θk < 2π the
Rayleigh quotient Rσ is defined on W̊ 1,2 (0, θk) \ {0} by

(25) Rσ (φ) =

∫ θk
0
σ̃ (θ) φ′ (θ)

2
dθ

∫ θk
0
σ̃ (θ) φ (θ)

2
dθ
,

where σ̃ (θ) = σi ∈ R+ for θ ∈ (θi−1, θi).

Lemma 4. Let Rσ be defined in (25). Then the following holds.

(1) Rσ attains its infimum µ1 for some φ1,σ ∈ W̊ 1,2 (0, θk) \ {0} and µ1 ≥
1
4

minσi

maxσi
> 0.

(2) The minimizing function φ1,σ is unique up to multiplication, has a fixed
sign and, after normalizing by

(26) max {φ1,σ (θ) ; 0 < θ < θk} = 1,
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satisfies for some Cσ, cσ > 0;

(27) cσ sin

(
π

θk
θ

)
≤ φ1,σ (θ) ≤ Cσ sin

(
π

θk
θ

)
for all θ ∈ [0, θk] .

(3) φ1,σ is the unique first eigenfunction, in the sense that

φ1,σ,i := φ1,σ|[θi−1,θi] ∈ C2 [θi−1, θi]

satisfies

(28)





−φ′′1,σ,i = µ1φ1,σ,i on (θi−1, θi) with i ∈ {1, . . . , k} ,
φ1,σ,1 (0) = 0,
φ1,σ,i (θi) = φ1,σ,i+1 (θi)
σiφ
′
1,σ,i (θi) = σi+1φ

′
1,σ,i+1 (θi)

}
for i ∈ {1, . . . , k − 1} ,

φ1,σ,k (θk) = 0,

and there is no other, independent, eigenfunction for µ ≤ µ1.

Proof. By [6, Section 8.12] one finds that the minimizer φ1,σ ∈ W̊ 1,2 (0, θk) of
(25), that we may normalize by (26), exists, is unique and is of fixed sign. Let
µ1 be the minimum value of (25). Since for φ 6≡ 0 one has

(29)

∫ θk
0
σ̃ (θ) φ′ (θ)

2
dθ

∫ θk
0
σ̃ (θ) φ (θ)

2
dθ
≥ minσi

maxσi

∫ θk
0
φ′ (θ)

2
dθ

∫ θk
0
φ (θ)

2
dθ
≥ 1

4

minσi
maxσi

,

one finds µ1 ≥ 1
4

minσi

maxσi
. In the last step of (29) we used the optimal Poincaré

constant, which is (π/θk)
2

and which can be estimated from below by 1
4 , since

θk ≤ 2π holds. The function φ1,σ satisfies the weak Euler-Lagrange equation

∫ θk

0

σ
(
φ′1,σφ

′ − µ1φ1,σφ
)
dx = 0 for all φ ∈ W̊ 1,2 (0, θk) .

Taking testfunctions with support in (θi−1, θi) one finds that

(30) φ1,σ,i := φ1,σ|[θi−1,θi] ∈W 2,2 (θi−1, θi)

satisfies −φ′′1,σ,i = µ1φ1,σ,i on (θi−1, θi) and even that φ1,σ,i ∈ C∞ [θi−1, θi].

Since φ1,σ ∈ W̊ 1,2 (0, θk) holds, the functions φ1,σ,i satisfy the continuity equa-
tion φ1,σ,i (θi) = φ1,σ,i+1 (θi) and the boundary conditions φ1,σ,1 (0)=φ1,σ,k (θk)
= 0. The jump condition σiφ

′
1,σ,i (θi) = σi+1φ

′
1,σ,i+1 (θi) follows by taking test-

functions in the weak Euler-Lagrange equation with support near θi. Assuming
φ1,σ ≥ 0 holds, the strict positivity, with φ′1,σ (0) > 0 and φ′1,σ (θk) < 0, follows
from the unique continuation. Indeed, if φ′1,σ,i (θ∗) = 0 = φ1,σ,i (θ∗) for some
i and some θ∗ ∈ [θi−1, θi], then φ1,σ ≡ 0. The estimate in (27) is a direct
consequence. �
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Appendix B. A maximum principle for weak solutions

The following result is quite direct but we nevertheless state it for easy
reference.

Theorem 5. Let Ω ⊂ Rn be a bounded domain. Let σ ∈ L∞ (Ω) with σ ≥ σ0 >

0. Suppose that u ∈W 1,2 (Ω) is such that min (u, 0) ∈ W̊ 1,2 (Ω) and satisfies
∫

Ω

σ ∇u · ∇ϕ dx ≥ 0 for all ϕ ∈ W̊ 1,2 (Ω) with ϕ ≥ 0.

Then one finds u ≥ 0 in Ω.

Proof. With ϕ = −min (u, 0), which lies in W̊ 1,2 (Ω) and is nonnegative, we
find

0 ≤
∫

Ω

σ ∇u · ∇ϕ dx = −
∫

Ω

σ |∇ϕ|2 dx ≤ 0.

Hence ∇ϕ = 0, which implies ϕ = 0 and hence u ≥ 0. �

Appendix C. Equivalent solutions

Lemma 6. Suppose that the domain Ω is the union of subdomains Ωi with

i = 1, . . . , k, that is Ω =
⋃k
i=1 Ωi and Ωi ∩ Ωj = ∅ whenever i 6= j, and is such

that ∂Ω,Ω∩ ∂Ωi ∩ ∂Ωj ∈ C2. Suppose also that the weight function σ : Ω→ R
is a piecewise constant positive function defined by

σ(x) = σi for x ∈ Ωi with σi ∈ R+.

Suppose that u ∈W 1,2 (Ω) and ui := u|Ωi
∈W 2,2 (Ωi). Then the following two

statements are equivalent:

(1) u is such that

(31)





−∆ui = f in Ωi,

ui = uj
σi
∂ui

∂νi
= −σj ∂uj

∂νj

}
as traces on Ω ∩ ∂Ωi ∩ ∂Ωj .

(2) u satisfies

(32)

∫

Ω

σ (∇u · ∇ϕ− fϕ) dx = 0 for all ϕ ∈ W̊ 1,2 (Ω) .

Proof. One directly finds for ϕ ∈ W̊ 1,2 (Ω) that

∫

Ω

σ (∇u · ∇ϕ− fϕ) dx =

k∑

i=1

∫

Ωi

σi (∇ui · ∇ϕ− fϕ) dx

=

k∑

i=1

(∫

∂Ωi

σi
∂ui
∂νi

ϕ dx+

∫

Ωi

σi (−∆ui − f)ϕdx

)
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=

k∑

i,j=1

(∫

∂Ωi∩∂Ωj

(
σi

∂ui
∂νi

+ σj
∂uj
∂νj

)
ϕ dx+

∫

Ωi

σi (−∆ui − f)ϕdx

)
.

(33)

By the assumption that ui ∈ W 2,2 (Ωi) these integrals are well-defined. Note
that the boundary integral over ∂Ω drops out since ϕ = 0 as trace on ∂Ω.

So (31) implies (32).
Assuming (32) and testing with ϕ ∈ C∞0 (Ωi) gives −∆ui− f = 0. The con-

dition ui = uj on ∂Ωi∩∂Ωj follows from u ∈W 1,2 (Ω). By taking testfunctions
with support intersecting ∂Ωi ∩ ∂Ωj one establishes the jump condition in the
normal derivatives. �

Appendix D. Some examples

Example 1. We first consider the simplest case, namely we take Ω locally flat
with Ω = Ω1 ∪ Ω2 and

Ω1 ∩Bρ (0) = {(r cos θ, r sin θ) ; 0 < r < ρ and θ ∈ (0, θ1)} ,
Ω2 ∩Bρ (0) = {(r cos θ, r sin θ) ; 0 < r < ρ and θ ∈ (θ1, π)} .

Then by a direct computation one shows that the first eigenfunction of (28) is
given by

φ1 (θ) =

{
sin (λθ) for θ ∈ [0, θ1] ,

sin(λθ1)
sin(α1(λ)) sin (λ (θ − θ1) + α1 (λ)) for θ ∈ (θ1, π] ,

where α1 (λ) = arccot
(
σ1

σ2
cot (λθ1)

)
and where λ is the smallest positive num-

ber such that φ1 (π) = 0.
The behaviour at 0 as in (14) and (19) is given by rλφ1 (θ) with λ =

√
µ1.

Assuming that σ1 > σ2 and letting σ1

σ2
→ ∞, one finds the ‘extreme’ cases for

θ1 ↑ π and for θ1 = 1
3π. These cases correspond with λ ↓ 1

2 respectively λ ↑ 3
2 .

Sketches with nearby values can be found in Fig. 3. One may show that for all
σ1, σ2 ∈ R+ and all 0 = θ0 < θ1 < θ2 = π it holds that

1

2
<
√
µ1 <

3

2
.

Note that for θ1 = 1
2π one finds ϕ1 (θ) = sin θ and µ1 = 1 independently of σ1

or σ2.

Example 2. Also in the next case Ω is flat, but now it has three subdomains,
such that

Ω1 ∩Bρ (0) = {(r cos θ, r sin θ) ; 0 < r < ρ and θ ∈ (0, θ1)} ,
Ω2 ∩Bρ (0) = {(r cos θ, r sin θ) ; 0 < r < ρ and θ ∈ (θ1, θ2)} ,
Ω3 ∩Bρ (0) = {(r cos θ, r sin θ) ; 0 < r < ρ and θ ∈ (θ2, π)} ,
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σ1 = 100σ2, θ1 = 11
12π,

√
µ1 = 0.568 · · · σ1 = 100σ2, θ1 = 1

3π,
√
µ1 = 1.43 · · ·

Figure 3. Plots of rλφ1 (θ), which show the typical behaviour
of u near a boundary point where ∂Ω is smooth and σ has one
jump. The inset displays the eigenfunction φ1. For the sake
of easy comparison the positive direction of the inset is to the
left.

σ1 = σ3 = 0.01σ2, θ1 = 1
9π, θ2 = 8

9π,
√
µ1 = 0.152 · · · σ1 = σ3 = 100σ2, θ1 = 1

4π, θ2 = 3
4π,
√
µ1 = 1.87 · · ·

Figure 4. Plots of rλφ1 (θ) are showing the typical behaviour
of u near a boundary point where σ has two jumps. The inset
displays the corresponding eigenfunction φ1. Again the inset
has the positive direction to the left.

and Ω = Ω1 ∪ Ω2 ∪ Ω3. Then

φ1 (θ) =





sin (λθ) for θ ∈ [0, θ1] ,
φ1 (θ1)

sin (α1 (λ))
sin (λ (θ − θ1) + α1 (λ)) for θ ∈ (θ1, θ2] ,

φ1 (θ2)

sin (α2 (λ))
sin (λ (θ − θ2) + α2 (λ)) for θ ∈ (θ2, π] ,

with

α1 (λ) = arccot

(
σ1

σ2
cot (λθ1)

)
and

α2 (λ) = arccot

(
σ2

σ3
cot (λ (θ2 − θ1)) + α1 (λ)

)
.

Again λ is the smallest positive number such that φ1 (π) = 0.
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Again the behaviour at 0 as in (14) and (19) is given by rλφ1 (θ) with
λ =

√
µ1. If σ1 = σ3 > σ2 one finds the extreme cases when σ2

σ1
→ 0 for

θ1 = 1
4π, θ2 = 3

4π. For σ1 = σ3 < σ2 and σ2

σ1
→ ∞ the ‘extreme’ case appears

for θ1 = π − θ2 ↓ 0. See Fig. 4.
For three subdomains as above one may show that for all σ1, σ2, σ3 ∈ R+

and all 0 = θ0 < θ1 < θ2 < θ3 = π it holds that

0 <
√
µ1 < 2.
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[14] D. Mercier, Minimal regularity of the solutions of some transmission problems, Math.
Methos Appl. Sci. 26 (2003), no. 4, 321–348.

[15] S. Nicaise, Polygonal interface problems, Methoden und Verfahren der Mathematischen

Physik, 39. Verlag Peter D. Lang, Frankfurt-am-Main, 1993.
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