
J. Korean Math. Soc. 54 (2017), No. 1, pp. 215–225
https://doi.org/10.4134/JKMS.j150684
pISSN: 0304-9914 / eISSN: 2234-3008

DISTANCE BETWEEN CONTINUOUS FRAMES

IN HILBERT SPACE

Zahra Amiri and Rajab Ali Kamyabi-Gol

Abstract. In this paper, we study some equivalence relations between
continuous frames in a Hilbert space H. In particular, we seek two nec-
essary and sufficient conditions under which two continuous frames are
near. Moreover, we investigate a distance between continuous frames in
order to acquire the closest and nearest tight continuous frame to a given
continuous frame. Finally, we implement these results for shearlet and
wavelet frames in two examples.

1. Introduction

Discrete and continuous frames arise in many applications in both pure and
applied mathematics. Specially, they have important roles in digital process-
ing and scientific computations. Discrete frames in a Hilbert space have been
introduced by Duffin and Schaeffer in 1952 to study some deep problems in non-
harmonic Fourier series [6]. The concept of generalization of frames to a family
indexed by a locally compact spaces endowed with a Radon measure was pro-
posed by Kaiser [10]. These frames are known as continuous frames. Gabardo
and Han called these frames “frames associated with measurable spaces” in
[8]. In mathematical physics they are referred to as coherent states [1]. Frame
theory began to be widely used, particularly in the more specialized context
of wavelet frames and Gabor frames. In [4] Balan has started with definition
of distance measure for discrete frames. By inspiring of distance between dis-
crete frames we want to investigate the approximation of continuous frames
of a Hilbert space H by tight ones. This theory plays an important role in
many areas, specially in wavelet and shearlet frames. To this end, we need
to study some equivalence relations between continuous frames and by using
them, define a distance between continuous frames. Also, we aim to establish
the geometric meaning of this metric and find the nearest continuous tight
frame to a given continuous frame.
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2. Preliminaries and notations

Let (Ω, µ) be a measure space and H be a separable Hilbert space. Recall
(cf. [2, 1, 3]) that a mapping F : Ω → H (or {F (ω)}ω∈Ω) is called a continuous
frame if it is weakly-measurable and there exist constants 0 < A ≤ B < ∞
such that

(2.1) A‖f‖2 ≤

∫

Ω

|〈 F (ω), f〉|2 dµ(ω) ≤ B‖ f‖2, (f ∈ H).

A continuous frame is said to be tight, if A = B and parseval if A = B = 1.
The mapping F is called a Bessel map, if the second inequality in (2.1) holds.
By definition, if F is a Bessel map, then TF : L2(Ω, µ) → H weakly defined by

TF (ϕ) =

∫

Ω

ϕ(ω)F (ω)dµ(ω),

is a bounded linear operator. It is surjective and bounded if and only if F is
a frame. This operator is called the synthesis operator. The adjoint of TF is
given by

T ∗
F : H → L2(Ω, µ), T ∗

F (f)(ω) = 〈f, F (ω)〉, ω ∈ Ω,

is called the analysis operator. The continuous frame operator is defined to be
SF := TFT

∗
F . It is invertible and positive.

It is easily shown that a Bessel map F is a frame if and only if there exists
a Bessel map G such that

〈f, g〉 =

∫

Ω

〈f,G(ω)〉〈g, F (ω)〉, f, g ∈ H.

We call such as G, a dual frame for Fand S−1
F F known as the standard dual

of F . It is certainly possible of a continuous frames F to have only one dual.
In this case we call F a Riesz-type frame. It is known that F is Riesz-type if
and only if Rang(T ∗

F ) = L2(Ω, µ) [3, 8]. We denote by L2(Ω, µ,H) the set of
all mappings F : Ω → H such that for all f ∈ H, the functions ω → 〈f, F (ω)〉
defined almost everywhere on Ω, belong to L2(Ω, µ). We shorten L2(Ω, µ,H)
to L2(Ω,H).

In this note we shall discuss mainly the relations between two continuous
frames. Consider two continuous frames F and G on Hilbert space H, we inves-
tigate the partial equivalent, similarity, unitary equivalent and partial isometric
equivalent. For a definition see Section 3.

3. Geometry of continuous frames

In this section, we are mainly concerned with the relations between two
continuous frames.

Let F and G be two continuous frames in Hilbert space H. We recall that
F is called partial equivalent with G if there is a bounded linear operator
J : H → H with JF = G. Moreover, if J is also invertible, F and G are called
similar. In particular, if F and G are similar via a unitary operator J , they
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are called unitary equivalent. Also F and G are called partial isometric if they
are partial equivalent via a partial isometry J . Note that in this case J should
satisfy JJ∗ = 1.

We want to describe similarity property via concept nearness. For a defini-
tion see Remark 3.3. To this end, we need the following lemmas.

Lemma 3.1. Let F and G be two continuous parseval frames in H. Then

(1) RangT ∗
G ⊂ RangT ∗

F if and only if the continuous frame F is partial

isometric equivalent with continuous frame G, via J .

(2) RangT ∗
G = RangT ∗

F if and only if the two continuous frames F and G

are unitary equivalent.

Proof. (1) Suppose F is partial isometric equivalent with G. Then JF = G

and

JTF (ϕ) = J(

∫

Ω

ϕ(ω)F (ω)dµ(ω))

=

∫

Ω

ϕ(ω)JF (ω)dµ(ω)

=

∫

Ω

ϕ(ω)G(ω)dµ(ω)

= TG(ϕ).

So T ∗
G = T ∗

FJ
∗ for some partial isometry J and RangT ∗

G ⊂ RangT ∗
F . Con-

versely, suppose RangT ∗
G ⊂ RangT ∗

F . Consider two projections PF = T ∗
FTF

onto RangT ∗
F and PG = T ∗

GTG onto RangT ∗
G. Since RangT ∗

G ⊂ RangT ∗
F , we

have PFT
∗
G = T ∗

G. Define J : H → H, by J = TGT
∗
F . So

JJ∗ = TGT
∗
FTFTG = TGPFT

∗
G = TGT

∗
G = SG = 1.

To show JF = G, we have

JTF (ϕ) = TGT
∗
FTF = TGPF (ϕ) = TG(ϕ) for all ϕ ∈ L2(Ω, µ).

Thus
∫

Ω

ϕ(ω)(JF (ω) −G(ω))dµ(ω) = 0 for all ϕ ∈ L2(Ω, µ).

Hence JF = G.
Proof of (2) follows immediately form (1). �

Lemma 3.2. Let F and G be two continuous frames in Hilbert space H. Denote

by T ∗
F and T ∗

G respectively their analysis operators. Then

(1) RangT ∗
G ⊂ RangT ∗

F if and only if the continuous frame F is partial

equivalent with the continuous frame G.

(2) RangT ∗
G = RangT ∗

F if and only if the two continuous frames F and G

are similar.

Proof. (1) If F is partial equivalent with G via J , then T ∗
G = T ∗

FJ
∗ and ob-

viously RangT ∗
G ⊂ RangT ∗

F . Conversely, let us denote by SF and SG the
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frames operators. Suppose RangT ∗
G ⊂ RangT ∗

F , we have F is equivalent

with F1 = S
− 1

2

F F . By Lemma 3.1, F1 is partial equivalent with G1 = S
− 1

2

G

via J1 = TG1
T ∗
F1

which is a partial isometry. Also G1 is partial isometry
equivalent with G. By composing we get F is partial equivalent with G via

J = S
− 1

2

G J1S
− 1

2

F .
The proof of (2) is immediate from (1). �

Now we are going to describe some concept, such as closeness and nearness
for continuous frames. Let F and G be continuous frames in Hilbert space H.
We say that G is close to F if there exists a non-negative number λ ≥ 0 such
that

‖(TG − TF )f‖ ≤ λ‖TFf‖

for all f ∈ L2(Ω, µ). The infimum of λ will be called the closeness bound of
the frame G to the frame F and denoted by c(G,F ). Note that the closeness
relation is transitive, but not reflexive, generally.

Remark 3.3. If the continuous frame G is close to continuous frame F with
a closeness bound less than 1, then F is also close to G but, in general the
closeness bound is different. Indeed, we have ‖(TG − TF )f‖ ≤ λ‖TF f‖ and
‖TFf‖ ≤ ‖(TG − TF )f‖+ ‖TGf‖, thus for all f ∈ L2(Ω, µ),

‖(TG − TF )f‖ ≤
λ

1− λ
‖TGf‖.

Now we want to correct the nonreflexivity of the closeness relation. We say
that two continuous frames F and G are near if F is close to G and G is close
to F . In this case we define the predistance between F and G, denoted by
r0(F,G) as the maximum of the two closeness bounds, that is

r0(G,F ) = max(c(F,G), c(G,F )).

It is shown that r0(G,F ) is positive and symmetric, but does not satisfy the
triangle inequality.

We now present the connection between the closeness relation and partial
equivalence.

Theorem 3.4. Let F and G be two continuous frames in a Hilbert space H.

Then, they are near if and only if they are similar via some invertible operator

J. Moreover, r0(G,F ) = max(‖J − 1‖, ‖1− J−1‖).

Proof. Suppose F and G are near. By the definition, F is close to G and G is
close to F . Since F is close to G we have

‖(TF − TG)ϕ‖ ≤ λ‖TGϕ‖

for λ = c(F,G). If ϕ ∈ kerTG, then necessarily ϕ ∈ kerTF . Therefore,
kerTG ⊂ kerTF or RangT ∗

F = (kerTF )
⊥ ⊂ (kerTG)

⊥ = RangT ∗
G. Since G

is close to F , similarity we obtain RangT ∗
G ⊂ RangT ∗

F . Now applying Lemma
3.2, we get that G and F are similar for some invertible operator J . Hence,
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F = JG and if we put ν = TG(ϕ) we have ‖(J − 1)ν‖ ≤ λ‖ν‖. The smallest
value λ ≥ 0 that satisfies this inequality for any ν ∈ H is ‖J − 1‖. Therefore
c(F,G) = ‖J−1‖. Also if we put υ = TF (ϕ) we have ‖(1−J

−1)υ‖ ≤ λ‖υ‖. The
smallest value λ ≥ 0 that satisfies this inequality for any υ ∈ H is ‖(1− J−1)‖.
Therefore r0(G,F ) = max(‖J − 1‖, ‖1− J−1‖).

Conversely, suppose G and F are similar via invertible operator J . Then, it
is easy to check that r0(G,F ) = max(‖J − 1‖, ‖1− J−1‖) and then F and G
are near. �

As some consequences of Theorem 3.4, we have:

Corollary 3.5. Consider F and G as two continuous frames in Hilbert space

H. Then, F is close to G if and only if G is partial equivalent with F via some

bounded operator J . Moreover, c(F,G) = ‖J − 1‖.

Corollary 3.6. Let F be a continuous frame for H. Then F and the standard

dual of F are near and

c(S−1
F F, F ) = max(‖SF − 1‖, ‖1− S−1

F ‖).

The following result make a connection between the Paley and Wiener The-
orems given by Gabardo and Han in [8] and the relations introduced so far.

Lemma 3.7. Let F be a continuous frame for Hilbert space H over the measure

space Ω, G : Ω → H be a vector-valued mapping and there exist constants

λ1, λ2 > 0 such that max(λ1, λ2) < 1, and

‖(TF − TG)ϕ‖ ≤ λ1‖TFϕ‖ + λ2‖TGϕ‖

for all ϕ ∈ L2(Ω,H) with (µ{ϕ 6= 0}) <∞. Then G is a frame for H and

(1) RangT ∗
F = RangT ∗

G,

(2) G and F are near,

(3) r0(G,F ) <∞.

Proof. The conclusion that G is a frame follows from a stability result proved
by Gabardo and Han in [8]. If ϕ ∈ kerTF , then

‖TGϕ‖ ≤ λ2‖TGϕ‖.

Since λ2 < 1, TGϕ = 0. Therefore, kerTF ⊂ kerTG. Similarly it is easy to
show kerTG ⊂ kerTF . Hence, RangT ∗

F = RangT ∗
G. Now applying Theorem

3.4, the proof is complete. �

Corollary 3.8. Suppose F is a Rize-type frame for Hilbert space H. Let G :
Ω → H be a vector-valued mapping and there exists constant 0 ≤ λ < 1, such
that

‖(TF − TG)ϕ‖ ≤ λ‖TFϕ‖.

Then G is a Rize-type frame for H and

(1) G is similar to F ,

(2) c(F,G) ≤ λ < 1 and r0(G,F ) <∞.
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Proof. By Remark 3.3, from c(G,F ) < 1, we get c(F,G) ≤ λ
1−λ <∞. Therefore

G and F are near. Now Theorem 3.4 show that G is similar to F and G is a
Rize-type frame for H. �

Theorem 3.4 allows us to partition the set of all frames on Hilbert space H,
denote by F(H), into equivalent classes, {εα}α∈A where εα ⊂ F(H) is the set
of all frames which are near to each others. Therefore, for each index α ∈ A,

the function ro : εα×εα → R+ is well-defined and finite. As mentioned earlier,
r0(G,F ) is positive and symmetric, but does not satisfy the triangle inequality.
This inconvenience can be removed if we define the distance between F and G
by

r : εα × εα → R+, r(F,G) = log(r0(F,G) + 1).

Now we show that r(F,G) is really a distance (a metric) on the set of all frames
which are near. By Theorem 3.4, the function r0(F,G) is well defined on the
set of all frames which are near to one another. So the function r(F,G) on
this set is well defined. To prove that r0(F,G) is a distance we need to check
only the triangle inequality. Let F , G and K be frames which are near to each
other. Then, there exist invertible bounded operators Q and R on H such that
G = QF , K = RG and therefore K = RQF . We have

r(F,G) = log(1 + max(Q− 1, Q−1 − 1)),

r(G,K) = log(1 + max(R− 1, R−1 − 1)),

r(F,K) = log(1 + max(RQ− 1, Q−1R−1 − 1)),

and

‖RQ− 1‖ = ‖(R− 1)(Q − 1) +R+Q− 2‖

< ‖R− 1‖‖Q− 1‖+ ‖R− 1‖+ ‖Q− 1‖

= (‖R− 1‖+ 1)(‖Q− 1‖+ 1)− 1.

Hence,

log(‖RQ− 1‖+ 1) ≤ log(‖R− 1‖+ 1) + log(‖Q− 1‖+ 1).

Similarly

log(‖Q−1R−1 − 1‖+ 1) ≤ log(‖R−1 − 1‖+ 1) + log(‖Q−1 − 1‖+ 1),

and therefore r(F,K) ≤ r(F,G) + r(G,K).
For a frame G, we denote the set of all tight frames which are close to G by

Λ1 and the set of all tight frames that G is close to them by Λ2. More precisely,

Λ1 = {F : F is a tight frame and c(G,F ) <∞},

and

Λ2 = {F : F is a tight frame and c(F,G) <∞}.

Let r1 : Λ1 → R+, r
2 : Λ1 → R+ be maps denote the map from each F to

the associated closeness bound, i.e., r1(F ) = c(G,F ) and r2(F ) = c(F,G).
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Obviously, if G is a tight frame, then G ∈ Λ1 ∩ Λ2 and min r1 = min r2 = 0.
Now consider the intersection between these two sets:

Λ = Λ1 ∩ Λ2 = {F : F is a tight frame and r(G,F ) <∞}.

We are looking for the minimum of the functions r1, r2 and r |Λ . By applying
Theorem 3.4, we obtain the following lemma:

Lemma 3.9. Let G be a continuous frame in H and Λ as above. Then Λ is

parametrized in the following way:

Λ = {F : F = γU(S
− 1

2

G G) where γ > 0, U is unitary}.

Proof. Let γ ≥ 0 and U be unitary. Then F = γU(S
− 1

2

G G) is a tight frame

with bound γ
1
2 . Indeed, we have

F (ω) =

∫

Ω

〈F (ω), S
− 1

2

G (G(ω))〉S
− 1

2

G (G(ω))dµ(ω).

Hence,

γ2‖F (ω)‖2 =

∫

Ω

‖〈F (ω), γUS
− 1

2

G G(ω)〉‖2dµ(ω).

Conversely, for F ∈ Λ from Theorem 3.4, we get F = J(S
− 1

2

G G) for some
invertible operator J . Now its frame operator:

SF (f) =

∫

Ω

〈f, F (ω)〉F (ω)dµ(ω)

= J(

∫

Ω

〈J∗f, S
− 1

2

G G(ω)〉S
− 1

2

G G(ω)dµ(ω))

= JJ∗(f).

Therefore JJ∗ = A.1, which means that 1
A
J is unitary and J =

√
AU for some

unitary operator U . �

Now we are concerned here with the closeness and distance functions r1, r2

and r |Λ which introduced earlier. In fact, we would like to characterize the
minimum of these distances.

Theorem 3.10. Let G be a continuous frame in H with optimal frame bounds

A,B. Then min(r1) = min(r2) =
√
B−

√
A√

A+
√
B

and min(r |Λ) =
1
4 log

B
A
.

Proof. We are looking for the infimum of the functions r1, r2. We know that
√
B−

√
A√

A+
√
B
< 1, we may then restrict our attention to only the tight frames F ∈ Λ1

such that r1(F ) < 1. But this implies also that r2(F ) <∞ (or for F ∈ Λ2 such
that r2(F ) < 1. This implies that r1(F ) <∞). Therefore, we may restrict our
attention only to tight frames in Λ1 ∩ Λ2 = Λ. Lemma 3.9, tells us that these

frames must have the form F =
√
γU(S

− 1
2

G G) for some γ > o and U unitary.
So
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(1) r1(F ) = ‖1− 1√
γ
S

1
2U−1‖ = ‖ 1√

γ
S

1
2 − U‖,

(2) r2(F ) = ‖
√
γS− 1

2U − 1‖ = ‖
√
γS− 1

2 − U‖,

(3) r(F,G) = max(‖ 1√
γ
S

1
2 − U‖, ‖

√
γS− 1

2 − U‖).

Now we want to solve these norm problems. For r1 and r2 we apply Lemma
3.2 in [4], that assert for a bounded invertible selfadjoint operator T on Hilbert
space H. Put a = ‖T−1‖−1 and b = ‖T ‖, the solution of the following inf-
problem

µ = inf
α>0, Uunitary

‖αT − U‖

is given by µ = b−a
b+a and α = 2

a+b .

For part (1), apply this lemma with T = S
1
2 , α = 1√

γ
and a =

√
A, b =

√
B,

then we get µ =
√
B−

√
A√

B+
√
A

and α = 2√
B+

√
A
. For part (2), we apply the lemma

3.2 in [4], with T = S− 1
2 , α =

√
γ and a = 1√

B
, b = 1√

A
. We get µ =

√
B−

√
A√

A+
√
B

and α = 2
√
AB√

A+
√
B
.

For r(F,G) we apply Lemma 3.3 in [4], that for a bounded invertible self-
adjoint operator T on H with a = ‖T−1‖−1 and b = ‖T ‖, the solution of the
following optimization problem:

µ = inf
α>0, Uunitary

max(‖αT − U‖, ‖
1

α
T−1 − U‖)

is given by µ =
√

b
a
− 1, α = 1√

ab
.

The solution for r(F,G) is now straightforward. If we apply this lemma

with T = S
1
2 , α = 1√

γ
and a =

√
A, b =

√
B. We get µ = (B

A
)

1
4 − 1 and

α = 1
(AB)4 . �

The values in Theorem 3.10 are achieved by the following scaling of associ-
ated tight frames of G.

Proposition 3.11. Let G be a continuous frame in H with optimal frame

bounds A,B. If

F1 =

√
A+

√
B

2
S
− 1

2

G G,

F2 =
2
√
AB

√
A+

√
B
S
− 1

2

G G,

F3 = (AB)
1
4S

− 1
2

G G,

then r1(F1) = r2(F2) =
√
B−

√
A√

B+
√
A

and r(G,F3) =
1
4 log

B
A
.
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Proof. . For F1 = JG with J =
√
A+

√
B

2 S
− 1

2

G we have r1(F1) = c(G,F1) =

‖1− J−1‖. Now
√
A ≤ S

1
2

G ≤
√
B, therefore

−

√
B −

√
A

√
A+

√
B

≤ 1− J−1 ≤

√
B −

√
A

√
A+

√
B
,

which mean that ‖1− J−1‖ =
√
B−

√
A√

A+
√
B
.

For F2 = JG with J = 2
√
AB√

A+
√
B
S
− 1

2

G , we have r2(F2) = c(F2, G) = ‖J − 1‖

and a similar calculations show that

−

√
B −

√
A

√
A+

√
B

≤ J − 1 ≤

√
B −

√
A

√
A+

√
B
,

thus r2(F2) =
√
B−

√
A√

A+
√
B
. For F3 = JG with J = (AB)

1
4S

− 1
2

G , we have

r(G,F3) = log(1 + max(‖J − 1‖, ‖1− J−1‖)).

Since
√
A ≤ S

1
2

G ≤
√
B we can deduce (A

B
)

1
4 ≤ J ≤ (B

A
)

1
4 and therefore

‖J − 1‖ = ‖1− J−1‖ = max
(

(
B

A
)

1
4 − 1, 1− (

A

B
)

1
4

)

= (
B

A
)

1
4 − 1.

Then r(G,F3) =
1
4 log

B
A
. �

Now we present two examples to illustrate how our results can be applied.
Shearlet frames and wavelet frames are among the most important continuous
frames.

The shearlet representation was first introduced by Kutyniok and Labate in
[14]. Also they define the continuous shearlet frames and investigate some of
their applications [9], [13], [15] . Recently Kamyabi-Gol and Atayi in [11] have
introduced abstract locally compact shearlet group as a semidirect product
group and studied some of its properties.

Example 3.12. Let ψ ∈ L2(R2) be admissible, i.e.,

cψ =

∫

R

∫

R+

| ̂ψ(ξ1, ξ2)|
2

ξ21
dξ2dξ1 <∞.

For shearlet group S = (R+ × R)×λ R
2 with the operation

(a, s, t).(a
′

, s
′

, t
′

) = (aa
′

, s
′

+ s
√
a

′

, t
′

+ Ss′Aa′ t),

consider the continuous unitary representation

σ(a, s, tψf)(x) = DA
−1
a S

−1
s

Ttψ(x), x ∈ R
2,

where

Ss =

(

1 s

◦ 1

)

, Aa =

(

a ◦
◦

√
a

)

.



224 Z. AMIRI AND R.KAMYABI-GOL

We have

f =

∫

R2

∫

R

∫

R+

(SHψf)(a, s, t)σ(a, s, t)ψ
dadsdt

a
, f ∈ L2(R2).

The family {σ(a, s, tψf)ψ}a>0,s∈R,tψf∈R2 is a continuous shearlet frame for
L2(R2), where SHψ is the continuous shearlet transform. (See Proposition
3.3 in [12].) The family {σ(s)ψ}a>0,s∈R,tψf∈R2 is a tight frame and we have
min(r1) = min(r2) = min(r |Λ) = 0.

Example 3.13. If ψ ∈ L2(R) is admissible, i.e.,

Cψ =

∫

R

| ̂ψ(γ)|2

|γ|
dγ <∞

and, for a, b ∈ R, a 6= 0,

ψa,b(x) = (TbDaψ)(x) =
1

|a|
1
2

ψ(
x− b

a
), ∀x ∈ R,

then {ψa,b}a 6=0,b∈R is a continuous frame for L2(R) with respect to R \ 0 × R

equipped with the measure dadb
a2

and, for all f ∈ L2(R),

f =

∫

R

∫

R

Wψ(f)(a, b)ψ
a,b dadb

a2
,

where Wψ is the continuous wavelet transform defined by

Wψ(f)(a, b) =

∫

R

f(x)
1

|a|
1
2

ψ(
x− b

a
)dx.

For details see [5], [7].
It is easily shown that min(r1) = min(r2) = min(r |Λ) = 0.
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