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IMPROVED CONVERGENCE OF STEFFENSEN’S METHOD

FOR APPROXIMATING FIXED POINTS OF OPERATORS

IN BANACH SPACE

Ioannis K. Argyros and Hongmin Ren

Abstract. We present a new local as well as a semilocal convergence
analysis for Steffensen’s method in order to locate fixed points of opera-
tors on a Banach space setting. Using more precise majorizing sequences
we show under the same or less computational cost that our convergence
criteria can be weaker than in earlier studies such as [1–13], [21, 22]. Nu-
merical examples are provided to illustrate the theoretical results.

1. Introduction

In this study we are concerned with the problem of locating a locally unique
fixed point of equation

(1.1) F (x) = x,

where F is a continuous operator defined on a nonempty open subset D of a
Banach space X with values in itself.

Many problems in Computational Sciences and other disciplines can be
brought in a form like (1.1) using mathematical modelling [6, 9, 20, 22]. The
solutions of these equations can be rarely be found in closed form. That is why
most solution methods for these equations are usually iterative. The study
about convergence of iterative procedures is usually based on two types: semi-
local and local convergence analysis. The semi-local convergence matter is,
based on the information around an initial point, to give conditions ensuring
the convergence of the iterative procedure; while the local one is, based on the
information around a solution, to find estimates of the radii of convergence
balls.

Steffensen’s method defined by

(1.2)
xn+1 = xn +A−1

n (F (xn)− xn),

An = I − [F (xn), xn;F ] for each n = 0, 1, 2, . . . ,
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where, x0 is an initial point, and [·, ·;F ] ∈ L(X) denotes a divided difference
with the property

(1.3) [x, y;F ](x− y) = F (x) − F (y) for each x, y ∈ D with x 6= y,

has been used to generate a sequence approximating x⋆ [6,22,25]. Here, L(X)
denotes the space of bounded linear operators from X into X .

It is known that if F is differentiable, then

[x, x;F ] = F ′(x) for all x ∈ X.

There is a plethora on local as well as semi-local convergence results for
Steffensen’s method. We refer the reader to [1–26] and the references therein.
The usual hypotheses include (1.3) and Lipschitz-type hypotheses of the form

‖[x, y;F ]− [y, z;F ]‖ ≤ l1‖x− z‖

(see e.g. [13]) or

‖[x, y;F ]− [u, v;F ]‖ ≤ l2(‖x− u‖+ ‖y − v‖)

(see e.g. [19]) or

‖[x, y;F ]− [y, z;F ]‖ ≤ l3‖x− z‖+ l4‖x− y‖+ l5‖y − z‖,

(see e.g. [1,6,9,13,19]) where li > 0, i = 1, 2, 3, 4, 5 and for each x, y, z, u, v ∈ D

together with a contractive hypothesis (or not) of operator F .
In the present paper we provide a new semi-local and local convergence anal-

ysis for Steffensen’s method. Our approach uses more general Lipschitz-type
hypotheses and tighter majorizing sequences than the above listed references.

The paper is organized as follows: the semilocal convergence and local con-
vergence are given in Section 2 and Section 3, respectively. The numerical
examples are given in the concluding Section 4.

2. Semilocal convergence

We present the semilocal convergence analysis of Steffensen’s method (1.2)
in this section. It is convenient to introduce some parameters. Let a0 > 0,
a > 0, b > 0, c ≥ 0, d ≥ 0, η ≥ 0, Mi ≥ 0, i = 1, 2, 3 and Kj ≥ 0, j = 1, 2, 3, 4
be given parameters. Define parameters α, β, γ, δ, λ, µ, ξ0, ξ and ξ1 by

(2.1)

α = a[(K1 +K2)d+K3 +K4], β = ac(K2 +K3),
γ = (K1 +K2)d+K3 +K4, δ = a0 + (K2 +K3)c,
λ = γ(M1 +M3), µ = δ(M1 +M3) +M2 +M3,

ξ0 = aµ
1−β

, ξ = aλ
1−β

, ξ1 = α
1−β

for β 6= 1.

Moreover, define a function h : [0, 1) → R by

h(t) = ξ1ηt+ ξη2 + ξ0η + ξ1η − 1 +
[(ξη + ξ1)t

2 + (ξη + ξ0)t− (ξ0 + ξη)]η

1− t
.

Suppose that

(2.2) ξ1η < 1.
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Then, we have by (2.2) that h(0) = ξ1η − 1 < 0 and h(t) → +∞ as t → 1−. It
follows from the intermediate value theorem that function h has zeros in the
interval (0, 1). Denote by q the largest such zero. Then, we have that

(2.3) h(t) ≤ 0 for each t ∈ [0, q].

We can show the following auxiliary result on majorizing sequences for the
Steffensen’s method (1.2) using the preceding notation.

Lemma 2.1. Suppose that (2.2),

(2.4) β < 1

and

(2.5) (ξ0 + ξ1q)η ≤ q

hold. Then, the scalar sequence {tn} generated by

(2.6)

t0 = 0, t1 = η, tn+2 = tn+1 +
(ξtn + ξ0)(tn+1 − tn)

2

1− ξ1tn+1
for each n = 0, 1, 2, . . . ,

is well defined, nondecreasing, bounded from above by t⋆⋆ defined by

(2.7) t⋆⋆ =
η

1− q

and converges to its unique least upper bound t⋆ which satisfies

(2.8) η ≤ t⋆ ≤ t⋆⋆.

Moreover, the following estimates hold

(2.9) 0 ≤ tn+1 − tn ≤ qnη

and

(2.10) 0 ≤ t⋆ − tn ≤
qnη

1− q
.

Proof. We shall show estimates (2.9) and (2.10) using mathematical induction.
Define a sequence {qn} by

(2.11) qn =
(ξtn + ξ0)(tn+1 − tn)

1− ξ1tn+1
for each n = 0, 1, 2, . . . .

Then, we show using mathematical induction that

(2.12) qm ≤ q for each m = 0, 1, 2, . . . .

Estimate (2.12) holds for m = 0 by (2.5), (2.6) and (2.11) (for n = 0). It
follows from (2.7), (2.6) and (2.12) (for n = 0) that

0 ≤ t2 − t1 ≤ qη ⇒ t2 ≤ t1 + qη = (1 + q)η =
1− q2

1− q
η < t⋆⋆.
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Let us assume that (2.12) holds for all positive integers m ≤ n. Then, we have
again by (2.12) that

(2.13) 0 ≤ tm+1 − tm ≤ qmη

and

(2.14) tm+1 ≤
1− qm+1

1− q
η < t⋆⋆.

We shall show that (2.12) holds for m+ 1 replacing m. That is we must have
that

(2.15)
(ξ0 + ξtm+1)(tm+2 − tm+1)

1− ξ1tm+2
≤ q

or by (2.13) and (2.14) that

(ξ0 + ξ 1−qm+1

1−q
η)qm+1η

1− ξ1
1−qm+2

1−q
η

≤ q

or

(2.16) ξ0ηq
m + ξ

1− qm+1

1− q
qmη2 + ξ1

1− qm+2

1− q
η − 1 ≤ 0.

Estimate (2.16) motivates us to define recurrent functions fm on the interval
[0, 1) by

(2.17) fm(t) = ξ0ηt
m + ξ

1− tm+1

1− t
η2tm + ξ1

1− tm+2

1− t
η − 1.

We need a relationship between two consecutive functions fm. Using (2.17)
and some straight forward algebraic manipulation, we get that

(2.18) fm+1(t) = fm(t) + gm(t)ηtm,

where

(2.19) gm(t) = ξη(tm+2 + tm+1 − 1) + ξ1t
2 + ξ0t− ξ0.

We also need a relationship between two consecutive functions gm. Using
(2.19), we get that

(2.20) gm+1(t) = gm(t) + ξηtm+1(t2 − 1) ≤ gm(t) ≤ · · · ≤ g0(t).

In view of (2.18) and (2.20), we obtain in turn that

(2.21)

fm+1(t) ≤ fm(t) + g0(t)t
mη ≤ fm−1(t) + g0(t)t

m−1η + g0(t)t
mη

≤ · · · ≤ f0(t) + g0(t)η
1 − tm+1

1− t
≤ f0(t) +

g0(t)η

1− t
= h(t).

Estimate (2.16) certainly holds, if

fm(q) ≤ 0

or by (2.21), if h(q) ≤ 0 which is true by (2.3) for t = q. Hence, the induction
for (2.12) (i.e., for (2.13) and (2.14)) is complete.
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It follows that the sequence {tm} is nondecreasing, bounded from above by
t⋆⋆ defined by (2.7) and as such it converges to its unique least upper bound
t⋆ which satisfies (2.8). Finally, estimate (2.10) follows from (2.9) by using
standard majorizing techniques [6], [9], [20]. �

Next, we present another auxiliary result on majorizing sequences for the
Steffensen method (1.2).

Lemma 2.2. Suppose that

(2.22) ξ1tn < 1 for each n = 0, 1, 2, . . . .

Then, the sequence {tn} is well defined, nondecreasing and converges to its

unique least upper bound t⋆ which satisfies

(2.23) η ≤ t⋆ ≤
1

ξ1
for ξ1 6= 0.

Proof. The sequence {tn} is nondecreasing and bounded above by 1
ξ1
. �

Remark 2.3. The convergence criteria of Lemma 2.1 obviously imply criterion
(2.22) but not necessarily vice versa. Clearly, (2.23) is the weakest convergence
criterion for sequence {tn}. This criterion can be verified, since sequence {tn}
is known in advance. Notice also that one can test to see if there exists a finite
natural integer N such that

(2.24) tN+n = tN <
1

ξ1
for ξ1 6= 0

for each n = 0, 1, 2, . . . which implies tn ≤ tn+1 for each n = 0, 1, 2, . . . and
limn→∞ tn = t⋆.

Let U(x, ρ) and U(x, ρ) stand, respectively for the open and closed balls
in X with center x ∈ X and of radius ρ > 0. We shall show the semilocal
convergence of the Steffensen method (1.2) under the conditions (C):

(C1) F : D ⊂ X → X is a continuous operator;
(C2) There exists a divided difference [·, ·;F ] : D × D → L(X) satisfying

(1.3);
There exist x0 ∈ D, a0 > 0, a > 0, b > 0, c ≥ 0, d ≥ 0, η ≥ 0, Mi ≥ 0,

i = 1, 2, 3 and Kj ≥ 0, j = 1, 2, 3, 4 such that for each x, y, u ∈ D

(C3) A
−1
0 ∈ L(X), ‖A0‖ ≤ a0, ‖A

−1
0 ‖ ≤ a;

(C4) ‖[F (x0), x0;F ]‖ ≤ b;
(C5) ‖A

−1
0 (F (x0)− x0)‖ ≤ η;

(C6) ‖F (x0)− x0‖ ≤ c;
(C7) ‖F (x)− F (x0)‖ ≤ d‖x− x0‖;
(C8) ‖[F (x), x;F ]− [F (x0), x0;F ]‖ ≤ K1‖F (x)−F (x0)‖+K2‖F (x)−x0‖+

K3‖F (x0)− x‖+K4‖x− x0‖;
(C9) ‖[x, y;F ]− [u, y;F ]‖ ≤ M1‖x− u‖+M2‖x− y‖+M3‖u− y‖;
(C10) U1 = U(x0, dt

⋆ + c) ⊆ D

and hypotheses of Lemma 2.1 (or Lemma 2.2) hold.
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Theorem 2.4. Suppose that the (C) conditions hold. Then, the sequence {xn}
generated for x0 ∈ D by the Steffensen method (1.2) is well defined, remains in

U(x0, t
⋆) for each n = 0, 1, 2, . . . and converges to a fixed point x⋆ ∈ U(x0, t

⋆)
of operator F . Moreover, the following estimates hold

(2.25) ‖xn+1 − xn‖ ≤ tn+1 − tn

and

(2.26) ‖xn − x⋆‖ ≤ t⋆ − tn.

Proof. We shall show using mathematical induction that the following hold

(2.27) F (xm) ∈ U1,

(2.28) ‖xm+1 − xm‖ ≤ tm+1 − tm

and

(2.29) U(xm+1, t
⋆ − tm+1) ⊆ U(xm, t⋆ − tm).

By (C6) and (C10) we get that F (x0) ∈ U1. We have by (1.2), (2.6) and
(C5) that

‖x1 − x0‖ = ‖A−1
0 (F (x0)− x0)‖ ≤ η = t1 − t0,

which shows (2.25) for n = 0. For every z ∈ U(x1, t
⋆ − t1), we get that

‖z − x0‖ ≤ ‖z − x1‖+ ‖x1 − x0‖ ≤ t⋆ − t1 + t1 − t0 = t⋆ − t0,

which shows z ∈ U(x0, t
⋆ − t0). Hence, estimates (2.27)-(2.29) hold for m = 0.

Let us assume these estimates hold for all positive integers n ≤ m. Then, we
get that

‖xm+1 − x0‖ ≤

m+1
∑

i=1

‖xi − xi−1‖ ≤

m+1
∑

i=1

(ti − ti−1) = tm+1 − t0 = tm+1 ≤ t⋆,

and by (C6), (C7) and (C10)

‖F (xm+1)− x0‖ ≤ ‖F (xm+1)− F (x0)‖+ ‖F (x0)− x0‖

≤ d‖xm+1 − x0‖+ c ≤ d(tm+1 − t0) + c ≤ dt⋆ + c,

which implies xm+1 ∈ U(x0, t
⋆) and F (xm+1) ∈ U(x0, dt

⋆ + c).
We must show that A−1

m+1 ∈ L(X). Using the induction hypotheses, the
proof of Lemma 2.1 (or Lemma 2.2), (2.1), (C3) and (C6)-(C8), we get in turn
that

‖A−1
0 ‖‖Am+1 −A0‖(2.30)

≤ a‖[F (xm+1), xm+1;F ]− [F (x0), x0;F ]‖

≤ a[K1‖F (xm+1)− F (x0)‖ +K2(‖F (xm+1)− F (x0)‖+ ‖F (x0)− x0‖)

+K3(‖xm+1 − x0‖+ ‖F (x0)− x0‖) +K4‖xm+1 − x0‖]

≤ a[K1d‖xm+1 − x0‖+K2(d‖xm+1 − x0‖+ c) +K3(‖xm+1 − x0‖+ c)

+K4‖xm+1 − x0‖]
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≤ α‖xm+1 − x0‖+ β ≤ αtm+1 + β < 1.

It follows from (2.30) and the Banach lemma on invertible operators [6], [9], [20]
that A−1

m+1 ∈ L(X) and

(2.31) ‖A−1
m+1‖ ≤

‖A−1

0
‖

1−‖A−1

0
‖‖Am+1−A0‖

≤ a
1−(α‖xm+1−x0‖+β) ≤

a
1−(αtm+1+β) .

Hence, xm+2 is well defined. Using (1.2) we obtain in turn the identities

F (xm+1)− xm+1(2.32)

= F (xm+1)− xm+1 − F (xm) + xm + (I − [F (xm), xm;F ])(xm+1 − xm)

= F (xm+1)− F (xm)− [F (xm), xm;F ](xm+1 − xm)

= ([xm+1, xm;F ]− [F (xm), xm;F ])(xm+1 − xm)

and
xm+1 − xm = A−1

m (F (xm)− xm)

or
Am(xm+1 − xm) = F (xm)− xm

or
xm+1 − xm − [F (xm), xm;F ](xm+1 − xm) = F (xm)− xm

or

(2.33) xm+1 = F (xm) + [F (xm), xm;F ](xm+1 − xm).

Using (2.1), (C3), (C6)-(C8) and (2.33), we get in turn that

‖xm+1 − F (xm)‖

(2.34)

≤ ‖[F (xm), xm;F ]‖‖xm+1 − xm‖

≤ [‖[F (xm), xm;F ]− [F (x0), x0;F ]‖+ ‖[F (x0), x0;F ]‖]‖xm+1 − xm‖

≤ [((K1 +K2)d+K3 +K4)‖xm − x0‖+ a0 + (K2 +K3)c]‖xm+1 − xm‖

= (γ‖xm − x0‖+ δ)‖xm+1 − xm‖ ≤ (γtm + δ)(tm+1 − tm).

In view of (2.1), (C9) and (2.32)-(2.34) we also have that

‖F (xm+1)− xm+1‖(2.35)

= ‖([xm+1, xm;F ]− [F (xm), xm;F ])(xm+1 − xm)‖

≤ [M1‖xm+1 − F (xm)‖ +M2‖xm+1 − xm‖

+M3(‖xm − xm+1‖+ ‖F (xm)− xm+1‖)]‖xm+1 − xm‖

≤ [M1(γ‖xm − x0‖+ δ)‖xm+1 − xm‖+M2‖xm+1 − xm‖

+M3‖xm+1 − xm‖+M3‖xm+1 − F (xm)‖]‖xm+1 − xm‖

≤ [(M1 +M3)(γ‖xm − x0‖+ δ) +M2 +M3]‖xm+1 − xm‖2

≤ (λ‖xm − x0‖+ µ)‖xm+1 − xm‖2

≤ (λtm + µ)(tm+1 − tm)2.
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Using (1.2), (2.1), (2.6), (2.31) and (2.35) we get that

‖xm+2 − xm+1‖ ≤ ‖A−1
m+1‖‖F (xm+1)− xm+1‖

≤
a(λ‖xm − x0‖+ µ)‖xm+1 − xm‖2

1− (α‖xm+1 − x0‖+ β)

=
(ξ‖xm − x0‖+ ξ0)‖xm+1 − xm‖2

1− ξ1‖xm+1 − x0‖

≤
(ξtm + ξ0)(tm+1 − tm)2

1− ξ1tm+1
= tm+2 − tm+1,

which completes the induction for (2.28).
We have that for each w ∈ U(xm+2, t

⋆ − tm+2),

‖w − xm+1‖ ≤ ‖w − xm+2‖+ ‖xm+2 − xm+1‖

≤ t⋆ − tm+2 + tm+2 − tm+1 = t⋆ − tm+1,

which completes the induction for (2.29). Hence, it follows from (2.27)-(2.29)
and Lemma 2.1 (or Lemma 2.2) that sequence {xm} is complete in a Banach
space X and as such it converges to some x⋆ ∈ U(x0, t

⋆) (since U(x0, t
⋆) is a

closed set). By letting m → ∞ in (2.34), we get that F (x⋆) = x⋆. Finally,
estimate (2.26) follows from (2.25) by using standard majorizing techniques [6],
[9], [20]. �

Next, we present a result concerning the uniqueness of the fixed point x⋆.

Proposition 2.5. Suppose that the hypotheses of Theorem 2.4 hold and there

exists R ≥ t⋆ such that

(2.36) U(x0, R) ⊆ D

and

(2.37) a[(K1d+K2)t
⋆ + (K3 +K4)R+K3c] < 1.

Then, the limit point x⋆ is the only fixed point of operator F in U(x0, R).

Proof. Let y⋆ ∈ U(x0, R) be such that F (y⋆) = y⋆. The existence of x⋆ has
been established in Theorem 2.4. Set Q = I − [F (x⋆), y⋆;F ]. Then, using
(C6)-(C8), (2.36) and (2.37) we get in turn that

‖A−1
0 (Q −A0)‖ ≤ a[K1‖F (x⋆)− F (x0)‖+K2‖F (x⋆)− x0‖

+K3(‖F (x0)− x0‖+ ‖x0 − y⋆‖) +K4‖y
⋆ − x0‖]

≤ a[K1d‖x
⋆ − x0‖+K2‖x

⋆ − x0‖

+K3(c+ ‖x0 − y⋆‖) +K4‖y
⋆ − x0‖]

≤ a[(K1d+K2)t
⋆ + (K3 +K4)R+K3c] < 1.

It follows that Q−1 ∈ L(X). Then, using the identity

0 = x⋆ − y⋆ − F (x⋆) + F (y⋆) = (I − [x⋆, y⋆;F ])(x⋆ − y⋆) = Q(x⋆ − y⋆),
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we deduce that x⋆ = y⋆. �

Remark 2.6. (a) The limit point t⋆ can be replaced by t⋆⋆ (given in closed from
by (2.7)) in Theorem 2.3.

(b) Hypothesis (C7) does not necessarily imply that F is a contraction oper-
ator on D. This is an important observation, since in studies involving the
convergence of Steffensen’s method (1.2) F is usually a contraction opera-
tor [2–4, 13, 21].

(c) Condition

(2.38) ‖[x, y;F ]− [z, w;F ]‖ ≤ L(‖x− z‖+ ‖y − w‖)

for each x, y, z, w ∈ D is the popular hypothesis for iterative methods using
divided differences [2–4, 13, 21]. Clearly, conditions (C8) and (C9) are more
general and weaker than (2.38). Hence, our results can be used in cases the
earlier results cannot. Notice that if e.g. we set K2 = K3 = 0 in (C8), then
K1 ≤ L and K4 ≤ L. In case any of these inequalities is strict, then our
estimates on the distances are tighter.

3. Local convergence

We present the local convergence analysis of the Steffensen method (1.2).

Theorem 3.1. Let F : D ⊆ X → Y be a continuous Fréchet-differentiable

operator. Suppose that there exist a divided difference [·, ·;F ] : D×D → L(X)
of order one for operator F on D satisfying (1.3) and x⋆ ∈ D, p > 0, pi > 0,
i = 1, 2, 3, 4 such that for each x, y ∈ D

(3.1) F (x⋆) = x⋆, A−1
⋆ = (I − F ′(x⋆))−1 ∈ L(X),

(3.2) ‖F (x)− F (x⋆)‖ ≤ p‖x− x⋆‖,

(3.3) ‖A−1
⋆ ([x, x⋆;F ]− [y, x;F ])‖ ≤ p1‖x− y‖+ p2‖x

⋆ − x‖,

(3.4) ‖A−1
⋆ ([F (x), x;F ] − F ′(x⋆))‖ ≤ p3‖F (x)− x‖+ p4‖x− x⋆‖

and

(3.5) U(x⋆, pr) ⊆ D,

where

(3.6) r =
1

p3p+ p4 + p2 + (p+ 1)p1
.

Then, the sequence {xn} generated for x0 ∈ U(x⋆, r) − {x⋆} by the Steffensen

method (1.2) is well defined, remains in U(x⋆, r⋆) for each n = 0, 1, 2, . . . and
converges to x⋆. Moreover, the following estimates hold for n ≥ 0:

(3.7) ‖xn+1 − x⋆‖ ≤
(p2 + (p+ 1)p1)‖xn − x⋆‖2

1− (p3p+ p4)‖xn − x⋆‖
.
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Furthermore, if there exists R ≥ max{r, 1
p4
} such that U(x⋆, R) ⊆ D, then x⋆

is the only fixed point of operator F on U(x⋆, R).

Proof. Let x ∈ U(x⋆, r). Then, we have by (3.1), (3.2) and (3.5) that

‖F (x)− x⋆‖ = ‖F (x)− F (x⋆)‖ ≤ p‖x− x⋆‖ ≤ pr.

Hence, F (x) ∈ U(x⋆, pr). Next, we shall show that

A(x)−1 =
(

I − [F (x), x;F ]
)−1

∈ L(X).

Using (3.2), (3.4), (3.5) and (3.6), we get in turn that

(3.8)

‖A−1
⋆ (A(x) −A⋆)‖ = ‖A−1

⋆ ([F (x), x;F ] − F ′(x⋆))‖

≤ p3‖F (x)− F (x⋆)‖+ p4‖x− x⋆‖

≤ (p3p+ p4)‖x− x⋆‖ < (p3p+ p4)r < 1.

It follows from (3.8) that

(3.9)

‖A(x)−1A⋆)‖ ≤
1

1− (p3p+ p4)‖x− x⋆‖

≤
1

1− (p3p+ p4)r
.

In particular (3.9) holds for x = x0. Hence, x1 is well defined. We have the
estimate

F (x0)− x⋆ − [F (x0), x0;F ](x0 − x⋆)(3.10)

= F (x0)− F (x⋆)− [F (x0), x0;F ](x0 − x⋆)

= ([x0, x
⋆;F ]− [F (x0), x0;F ])(x0 − x⋆).

Then, using (3.1), (3.2), (3.3), (3.9) and (3.10), we get in turn that

‖A−1
⋆ ([x0, x

⋆;F ]− [F (x0), x0;F ])(x0 − x⋆)‖(3.11)

≤ (p1‖x0 − F (x0)‖+ p2‖x0 − x⋆‖)‖x0 − x⋆‖

≤ (p1(‖x0 − x⋆‖+ ‖F (x⋆)− F (x0)‖) + p2‖x0 − x⋆‖)‖x0 − x⋆‖

≤ (p1(1 + p) + p2)‖x0 − x⋆‖2.

Moreover, by (1.2) we can write that

(3.12)

x1 − x⋆ = x0 − x⋆ +A−1
0 (F (x0)− x0)

= A−1
0 (F (x0)− F (x⋆)− [F (x0), x0;F ])(x0 − x⋆)

= A−1
0 ([x0, x

⋆;F ]− [F (x0), x0;F ])(x0 − x⋆).

Furthermore, using (1.2), (3.6), (3.9) and (3.12), we obtain in turn that

‖x1 − x⋆‖ ≤ ‖A(x0)
−1A⋆‖‖A

−1
⋆ ([x0, x

⋆;F ]− [F (x0), x0;F ])(x0 − x⋆)‖(3.13)

≤
(p2 + (1 + p)p1)‖x0 − x⋆‖2

1− (p3p+ p4)‖x0 − x⋆‖
< ‖x0 − x⋆‖ < r,
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which shows (3.7) for n = 0 and x1 ∈ U(x⋆, r). By simply replacing x0,
F (x0), x1 by xk, F (xk), xk+1 in the preceding estimates, we arrive at estimate
(3.7). It then follows from the estimate ‖xk+1 − xk‖ < ‖xk − x⋆‖ < r⋆ that
limk→∞ xk = x⋆ and xk+1 ∈ U(x⋆, r). Finally, to show the uniqueness part,
let y⋆ ∈ U(x⋆, R) such that F (y⋆) = y⋆. Let Q = I − [x⋆, y⋆;F ]. Then, using
(3.4), we have in turn that

‖A−1
⋆ ([x⋆, y⋆;F ]− F ′(x⋆))‖ ≤ p3‖F (x⋆)− x⋆‖+ p4‖y

⋆ − x⋆‖

= p4‖y
⋆ − x⋆‖ < p4R < 1.

Hence, Q−1 ∈ L(X). Then, in view of the identity

0 = Q(y⋆ − x⋆),

we deduce that x⋆ = y⋆. �

A remark similar to Remark 2.6 can be follow for the local convergence.

4. Numerical examples

In the next two examples, we define

[x, y;F ] =

∫ 1

0

F ′(y + t(x− y))dt.

Example 4.1. Let X = D = U(0, 1), and define F on D by

F (x) = ρex − ρ+ τx,

where ρ, τ are given parameters with ρ + τ 6= 1. Then, x∗ = 0 is a fixed point
of F.

Note that for any x, y ∈ D we have in turn that

|F (x)− F (x⋆)| = |ρ(ex − 1) + τx| = |ρ(x+
x2

2!
+

x3

3!
+ · · · ) + τx|

= |ρ(1 +
x

2!
+

x2

3!
+ · · · ) + τ ||x|

≤ (|ρ(1 +
1

2!
+

1

3!
+ · · · )|+ |τ |)|x| = (|ρ|(e − 1) + |τ |)|x|,

|[x, x⋆;F ]− [y, x;F ]| = |

∫ 1

0

(

F ′(tx + (1− t)x⋆)− F ′(ty + (1− t)x)
)

dt|

= |

∫ 1

0

∫ 1

0

F ′′
(

θ(tx) + (1 − θ)(ty + (1− t)x)
)

(t(x− y)− (1− t)x)dθdt|

= |

∫ 1

0

∫ 1

0

ρeθ(tx)+(1−θ)(ty+(1−t)x)(t(x − y)− (1 − t)x)dθdt|

≤

∫ 1

0

|ρ|e(t|x− y|+ (1− t)|x|)dt =
1

2
|ρ|e(|x− y|+ |x|)
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and

|[F (x), x;F ] − F ′(x⋆)|

= |

∫ 1

0

(

F ′(tF (x) + (1− t)x) − (ρ+ τ)
)

dt|

= |

∫ 1

0

ρ(etF (x)+(1−t)x − 1)dt|

= |

∫ 1

0

ρ
(

tF (x) + (1 − t)x+
(tF (x) + (1 − t)x)2

2!
+ · · ·

)

dt|

≤

∫ 1

0

|ρ||tF (x) + (1 − t)x||1 +
(tF (x) + (1− t)x)

2!
+ · · · |dt

≤ |ρ|

∫ 1

0

|t(F (x) − x) + x|(1 +
1

2!
+ · · · )dt

≤
1

2
|ρ|(e − 1)(|F (x)− x|+ 2|x|).

We also have

A⋆ = 1− ρ− τ,

then, we can choose p, p1, p2, p3 and p4 in Theorem 3.1 as follow

p = |ρ|(e−1)+|τ |, p1 = p2 =
|ρ|e

2|1− ρ− τ |
, p3 =

|ρ|(e − 1)

2|1− ρ− τ |
, p4 =

|ρ|(e − 1)

|1− ρ− τ |
.

Using (3.6), we have

r =
2|1− ρ− τ |

|ρ|(2e− 1)
(

|ρ|(e − 1) + |τ |+ 2
)

and

pr =
2|1− ρ− τ |

(

|ρ|(e− 1) + |τ |
)

|ρ|(2e− 1)
(

|ρ|(e − 1) + |τ |+ 2
) .

We can choose suitable values of ρ and τ such that condition (3.5) is satisfied.
For example, let ρ = 0.4 and τ = −0.05, then we have that pr ≈ 0.197316753<
1 and all conditions in Theorem 3.1 are satisfied. Hence, Theorem 3.1 applies
for this example.

Note that for any x, y, u, v ∈ D, we have

|A−1
⋆ ([x, y;F ]− [u, v;F ])|

= |A−1
⋆

∫ 1

0

(F ′(tx+ (1− t)y)− F ′(tu+ (1 − t)v))dt|

= |A−1
⋆

∫ 1

0

∫ 1

0

F ′′(θ(tx+ (1 − t)y) + (1 − θ)(tu+ (1 − t)v)(tx + (1− t)y

− tu− (1− t)v)dθdt|
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= |A−1
⋆

∫ 1

0

∫ 1

0

(ρeθ(tx+(1−t)y)+(1−θ)(tu+(1−t)v)(tx+ (1− t)y

− tu− (1− t)v))dθdt|

≤

∫ 1

0

e|t(x− u) + (1− t)(y − v)|dt

≤
|ρ|e

2|1− ρ− τ |
(|x − u|+ |y − v|).

Then, if we replace conditions (3.3) and (3.4) by the classical condition for
divided difference of order one

‖A−1
⋆ ([x, y;F ]− [z, w;F ])‖ ≤ l(‖x− z‖+ ‖y − w‖),

we can set

l =
|ρ|e

2|1− ρ− τ |
.

That is to say, we obtain the radius r′ of convergence ball for the Steffensen
method as follows

r′ =
1

(2p+ 3)l
=

2|1− ρ− τ |

|ρ|e
(

2|ρ|(e− 1) + 2|τ |+ 3
) .

Hence, we only get smaller radius of convergence ball for the Steffensen method
provided that

|ρ|(e− 1) + |τ |+ 2− e > 0,

since

r′

r
=

(2e− 1)(|ρ|(e− 1) + |τ |+ 2)

e(2|ρ|(e− 1) + 2|τ |+ 3)
< 1 ⇔ |ρ|(e − 1) + |τ |+ 2− e > 0.

In the next, suppose ρ = 0.4, τ = −0.05 and x0 = 0.2, we will verify that all
conditions of Theorem 2.4 hold. It is obvious that (C1) and (C2) are satisfied.
We also have A0 ≈ 0.589938812 6= 0, and (C3) is true for a0 ≈ 0.589938812
and a ≈ 1.69509105. It is easy to see that (C4)-(C6) are satisfied if we set
b ≈ 0.410061188, η ≈ 0.205849987 and c ≈ 0.121438897. Noting that F ′(x) =
0.4ex− 0.05 and F ′′(x) = 0.4ex, we deduce that F ′(x) increases monotonically
in D = [−1, 1] and it has the biggest value 0.4e− 0.05 in [−1, 1]. Then, (C7) is
true for d = 0.4e− 0.5 ≈ 1.037312731. In view of

|[F (x), x;F ] − [F (x0), x0;F ]|

= |

∫ 1

0

(

F ′(tF (x) + (1− t)x) − F ′(tF (x0) + (1− t)x0)
)

dt|

= |

∫ 1

0

∫ 1

0

F ′′(θ(tF (x) + (1− t)x) + (1 − θ)(tF (x0) + (1− t)x0))

(

t(F (x) − F (x0) + (1− t)(x− x0))
)

dθdt|

= |

∫ 1

0

∫ 1

0

0.4eθ(tF (x)+(1−t)x)+(1−θ)(tF (x0)+(1−t)x0)
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(

t(F (x) − F (x0) + (1− t)(x− x0))
)

dθdt|

≤ 0.2e(|F (x)− F (x0)|+ |x− x0|) for any x ∈ D

and

|[x, y;F ]− [u, y;F ]|

= |

∫ 1

0

(

F ′(tx+ (1− t)y)− F ′(tu+ (1 − t)y)
)

dt|

= |

∫ 1

0

∫ 1

0

F ′′(θ(tx + (1− t)y) + (1− θ)(tu + (1− t)y))(tx − tu)dθdt|

= |

∫ 1

0

∫ 1

0

0.4eθ(tx+(1−t)y)+(1−θ)(tu+(1−t)y)t(x− u)dθdt|

≤ 0.2e|x− u| for any x, y, u ∈ D,

we deduce that (C8) and (C9) are true if we set K1 = 0.2e, K2 = 0, K3 = 0,
K4 = 0.2e, M1 = 0.2e, M2 = 0 and M3 = 0. Using (2.1) and the definition of
q, we obtain that

α ≈ 1.8775, β = 0, γ ≈ 1.1076, δ ≈ 0.5899, λ ≈ 0.6022,

µ ≈ 0.3207, ξ0 ≈ 0.5437, ξ ≈ 1.0207, ξ1 ≈ 1.8775, q ≈ 0.6449.

Then, we have that ξ1η ≈ 0.3865 < 1, β < 1 and (ξ0+ξ1q)η ≈ 0.3612 < q. That
is to say, all conditions in Lemma 2.1 hold, so the sequence {tn} given by (2.6) is
well defined and converges to t⋆. By a simple computation, we get t⋆ ≈ 0.2622,
and then we deduce that U1 = U(x0, dt

⋆ + c) ≈ [−0.1934, 0.5934] ⊆ D, which
means (C10) is satisfied. Hence, all conditions in Theorem 2.4 are satisfied, and
thus all conclusions of this theorem are true.

Example 4.2. Let X = D = U(0, π2 ), and define F on D by

F (x) = ρ sinx+ τx,

where ρ, τ are given parameters with ρ + τ 6= 1. Then, x∗ = 0 is a fixed point
of F.

Note that for any x, y ∈ D we have in turn that

|F (x)− F (x⋆)| = |ρ sinx+ τx| ≤ (|ρ|+ |τ |)|x|,

|[x, x⋆;F ]− [y, x;F ]|

= |

∫ 1

0

(

F ′(tx+ (1− t)x⋆)− F ′(ty + (1− t)x)
)

dt|

= |

∫ 1

0

∫ 1

0

F ′′
(

θ(tx) + (1− θ)(ty + (1− t)x)
)

(t(x − y)− (1 − t)x)dθdt|

= |

∫ 1

0

∫ 1

0

ρ sin(θ(tx) + (1 − θ)(ty + (1− t)x))(t(x − y)− (1− t)x)dθdt|
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≤

∫ 1

0

|ρ|(t|x− y|+ (1− t)|x|)dt =
1

2
|ρ|(|x− y|+ |x|)

and

|[F (x), x;F ]− F ′(x⋆)|

= |

∫ 1

0

(

F ′(tF (x) + (1 − t)x)− F ′(0)
)

dt|

= |

∫ 1

0

∫ 1

0

F ′′
(

θ(tF (x) + (1− t)x)
)

(tF (x) + (1− t)x)dθdt|

= |

∫ 1

0

∫ 1

0

ρ sin
(

θ(tF (x) + (1− t)x)
)

(tF (x) + (1− t)x)dθdt|

≤
1

2
|ρ|(|F (x) − x|+ 2|x|).

We also have
A⋆ = 1− ρ− τ,

then, we can choose p, p1, p2, p3 and p4 in Theorem 3.1 as follow

p = |ρ|+ |τ |, p1 = p2 =
|ρ|

2|1− ρ− τ |
, p3 =

|ρ|

2|1− ρ− τ |
, p4 =

|ρ|

|1− ρ− τ |
.

Using (3.6), we have

r =
|1− ρ− τ |

|ρ|
(

|ρ|+ |τ |+ 2
)

and

pr =
|1− ρ− τ |(|ρ| + |τ |)

|ρ|
(

|ρ|+ |τ |+ 2
) .

We can choose suitable values of ρ and τ such that condition (3.5) is satisfied.
For example, let ρ = 0.5 and τ = 0, then we have that pr = 0.2 < 1 and all
conditions in Theorem 3.1 are satisfied. Hence, Theorem 3.1 applies for this
example.

In the next, suppose ρ = 0.5, τ = 0 and x0 = 0.39, we will verify that all
conditions of Theorem 2.4 hold. It is obvious that (C1) and (C2) are satisfied.
We also have A0 ≈ 0.521682172 6= 0, and (C3) is true for a0 ≈ 0.521682172
and a ≈ 1.916875931. It is easy to see that (C4)-(C6) are satisfied if we set
b ≈ 0.478317828, η ≈ 0.383194602 and c ≈ 0.199905792. Noting that F ′(x) =
0.5 cosx, we deduce easily that (C7) is true for d = 0.5. In view of

|[F (x), x;F ] − [F (x0), x0;F ]|

= |

∫ 1

0

(

F ′(tF (x) + (1− t)x) − F ′(tF (x0) + (1− t)x0)
)

dt|

= |

∫ 1

0

∫ 1

0

F ′′(θ(tF (x) + (1− t)x) + (1 − θ)(tF (x0) + (1− t)x0))

(

t(F (x)− F (x0)) + (1 − t)(x− x0)
)

dθdt|
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= |

∫ 1

0

∫ 1

0

0.5 sin
(

θ(tF (x) + (1− t)x) + (1 − θ)(tF (x0) + (1− t)x0)
)

(

t(F (x)− F (x0)) + (1 − t)(x− x0)
)

dθdt|

≤ 0.25(|F (x)− F (x0)|+ |x− x0|) for any x ∈ D

and

|[x, y;F ]− [u, y;F ]|

= |

∫ 1

0

(

F ′(tx + (1− t)y)− F ′(tu+ (1− t)y)
)

dt|

= |

∫ 1

0

∫ 1

0

F ′′(θ(tx+ (1 − t)y) + (1 − θ)(tu+ (1 − t)y))(tx− tu)dθdt|

= |

∫ 1

0

∫ 1

0

0.5 sin(θ(tx + (1− t)y) + (1− θ)(tu + (1− t)y))t(x − u)dθdt|

≤ 0.25|x− u| for any x, y, u ∈ D,

we deduce that (C8) and (C9) are true if we set K1 = 0.25, K2 = 0, K3 = 0,
K4 = 0.25, M1 = 0.25, M2 = 0 and M3 = 0. Using (2.1) and the definition of
q, we obtain that

α ≈ 0.7188, β = 0, γ = 0.375, δ ≈ 0.5217, λ ≈ 0.09375,

µ ≈ 0.1304, ξ0 = 0.25, ξ ≈ 0.1797, ξ1 ≈ 0.7188, q ≈ 0.7773.

Then, we have that ξ1η ≈ 0.2755 < 1, β < 1 and (ξ0+ξ1q)η ≈ 0.3099 < q. That
is to say, all conditions in Lemma 2.1 hold, so the sequence {tn} given by (2.6) is
well defined and converges to t⋆. By a simple computation, we get t⋆ ≈ 0.4499,
and then we deduce that U1 = U(x0, dt

⋆ + c) ≈ [−0.0348, 0.8148] ⊆ D, which
means (C10) is satisfied. Hence, all conditions in Theorem 2.4 are satisfied, and
thus all conclusions of this theorem are true.
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