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Improved Stability and Stabilization for Sampled-data Control System via Augmented
Lyapunov-Krasovskii Functional
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Abstract - This paper investigates improved stability and stabilization criteria for sampled-data control systems. By using a
suitable and newly constructed augmented Lyapunov-Krasovskii functional and some recent mathematic techniques such as
auxiliary function-based integral inequalities, sufficient conditions for stability and stabilization conditions are derived within
the framework of linear matrix inequalities(LMI) form. The superiority and validity of the proposed results are illustrated by

three numerical examples.
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1. Introduction

Due to the development of digital devices and network
communications, digital controllers have widely been used
in real systems. These controllers can be modeled by the
sampled-data control systems [1]. A sampled-data control
signal is decided only at the instant of sampling. The
schematic sampled-data control systems are shown in Fig.
1. The sampler and the zero-order hold(ZOH) devices are
located between the plant and the controller. In Fig. 1, the
output signals of the plant will be transmitted to the
controller inputs as discrete signals through the sampler
and then the controller discrete output signals will be
communicated in the plant inputs as discontinuous signals
through ZOH. Thus, a sampled-data controller design
method for the systems is more complicated process than
the general controller design method. Several researches
were dealt with the problem of sampled-data control
systems [2-9]. An refined input delay approach using the
Lyapunov-Krasovskii theory was investigated in [9] new
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constructions of Lyapunov functional for sampled-data
control systems were introduced in [5]. I-O approach via
Wirtinger-type inequality has proposed in [6]. Recently, a
novel analysis of asynchronous sampled-data systems was
proposed in [8]. In [7], application to electric power
markets for the sampled-data control systems was
considered. In this paper, the stabilization and stability
analysis of sampled-data control will be studied by

considering the digital input signal as a time-varying
delay signal like other papers [5,6,9].
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Fig. 1 The schematic structure of sampling process of a
continuous-time system.

One of the purposes of delay-dependent stability
analysis for the systems is to find maximum upper bounds
of time-delay which guarantee the asymptotic stability of
the systems. Many researchers have made various attempts
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to find less conservativeness of stability criteria for
time-delay systems [10-12]. Jensen inequality [11] has
been extensively used for analysis of many systems with
time-delays since it is a key role to derive a stability
condition when estimating the time-derivative of
Lyapunov-Krasovskii functionals. In [12], Wirtinger-based
integral inequality was introduced. Compared to Jensen
inequality, it have had extra terms which can help to
obtain much tighter bounds. Very recently, auxiliary
function-based integral inequalities [13] for quadratic
functions were developed via some auxiliary functions. It
can lead to less conservative conditions than Wirtinger-
based integral inequality. In this paper, auxiliary function-
based integral inequalities are used to obtain stability
condition and controller gain.

With motivations discussed above works, this paper
focused on stability analysis and controller design for
sampled-data control systems. Firstly, in Theorem 1, a
stability condition will be proposed by using the
appropriate Lyapunov-Krasovskii functionals with auxiliary
function-based integral inequalities. Secondly, based on
the result of Theorem 1, a controller design method will
be introduced in Theorem 2. Three numerical examples are
included to show the effectiveness of the proposed
theorems.

Notations. R" denotes the n-dimensional Euclidean
space, R"*™ is the set of nxXm real matrices. diag{--}
denotes the block diagonal matrix. The symmetric term in
a matrices and in quadratic forms will be denoted by *
(This is used if necessary.). For two symmetric matrices A
and B, A)(>)B means that A—B is (semi-) positive
definite. 7, denotes the nXn identity matrix. 0, and
0

matrix,

are denote the nxXn zero matrix and nXxXm zero

nxXm

respectively. If the context allows it, the

dimensions of these matrices are often omitted. For a
given matrix BER" ", we define B*ER"*®™ ) a5 the
right orthogonal complement of B by BB*=0. Sym{A4}
denotes the sum of “A” and symmetric matrix of “47".
X ER™™" means that the elements of the matrix

Xy includes the value of f(t); eg, Xj,)= Xjq)—,)

2. Problem statements and Preliminaries

Consider the linear system described by

128

2(t) = Az (t) + Bu(2), 1)

where z(t)ER" is the state vector, u(t)ER™ is the
vector of control signal, AER"™*"™ and BER™ ™ are
constant system matrices.

The control signal is assumed to be generated by a
ZOH function with a sequence of hold times 0= ¢,{t<...

(t,<.<limt, =co. Then, a state feedback controller can
fe—00

be transformed as

w(t) 222 ) =

Kz (t,), t, <t <ty 2
By defining h(t) =t—t,, a closed loop linear sampled-
data control system can be represented as

x(t) = Az (t) + BKz (t—h(t)), t <t<t,,. 3

Thus, the sampled-data control systems can be treated as
the time-varying delayed system. Moreover, it should be
noted that the time delay h(¢) is a time-varying delay
continuous function satisfying 0 < h(t) =t—¢, < h,, and
h(t) =1 for t=t,.

The purposes of this paper are to derive less
conservative delay-dependent stability condition and

design the sampled-data controller w(t)=Kz(t,) =

Kz(t—h(t)) to stabilize the system. To derive main
results, the following fact and lemmas are introduced.

Fact 1. [14] Given constant
matrices X,,%,, %, with 2,=%" and %,=%,, then X+
2y, <0 if and only if

(Schur complement)

%oz <0 or _2223<0
23 - Z12 23T 21 '
Lemma 1. (Auxiliary function-based integral

inequalities) [13] For a positive matrix R, an integrable
function {w(uw)lEla,b)}, the following inequalities hold:

/w u)du

> lea(QTRQ +307 R, + 501 RO,),

i [ [

u)duds > 207 RO, +46! RO,,



where

b,
(21=/ wlu)du,
b 2 b b
_QQ=/ w(u)d1¢—mf/w(r)drdu,

b 6 b pb
02, = \/‘w(u)dufmf fw(r)drdu
a b b(l b'll
+(612 )2// /w(v)dvdrdu,
—a a u T
1 b

b
e, = (u)duds,
b
92:_b—a a w)duds
3 bbb ()
+7\/‘ ffw v)dvduds.
(b_a)z a¥ s¥Y u
Lemma 2. (Finsler's lemma) [15] Let ¢ER™,

M=MTER" ", BER" such that rank(B)(n. The
following statements are equivalent:

i) ETME< 0,V BE=0, £+ 0,
i) BY MB* <0,

i) IFERV™ : M+BTFT+ FB<0.

Lemma 3. (Reciprocal convexity lemma) [10] For a

scalar o in the interval (01), a given positive matrix

T T,ER"™", any matrix XER"™" and two vectors

s T X
£.6,ER" satistving that [ *1T]> 0, then, the following

Inequality holds -

&

T 6T = 6,

T
Lerre + h X] 51}

* T2 52 .

3. Main result

This section consists of two subsections. The goal of
the first subsection is to find the stability condition for
linear systems with time-delay. The second subsection
describes how to design a controller for the system (3).

3.1 Stability condition

Trans. KIEE. Vol. 66, No. 1, JAN, 2017

dependent stability criterion for the system (3) is

expressed as follows
x(t) = Az (t) + A (t—h(t)) )

where A, = BK.

For simplicity of matrix and vector representation,
block e, ERPFN
(i=1,..,15) which will be wused. For

=1[71,0,. 14" and e = 1[0, g,20,.5,]" The other

notations are defined as

entry matrices are defined as

example,

zT(t—h(t)), 2" (t *hy)vl'.T(tth)’
t ; t=h(t)
f J:f(s)ds,/ z7(s)
t—h(t) t—hy
1

s)ds,
t - 1 t—h(t) r
W/t h()x (s)ds’ihM*h(t) /t—hJ, z1(s)ds,
f S
e t—h(t)
e

/L,L//

w)duds,

u)duds,

v)dvduds,

t—h(t t—h(t t—h(t
/ / / v)dvduds,
t—hy, s
/ f w)duds,
t—h(t s
t—hit t— h(t
/ f w)duds, ( )7,
hl[_h t—hy s
- 6rT es _269
1 7617‘*6’271 » 52 791 —e, +2€7

[
|

Y]

| el —6eg +12e]]
I—e) +6es — 12613

[T _ 9, T
= —| % = = 2610
—4 - —_— T
lef —el|” 77 |—el—el+2el]
T_a,T
- _| ¢ 6610+12612
==
ey —ei +6ed —12¢],|’
_ T__T o7
Q =el—e), Qy=—el—e]+2el,
_ T_ T T_ _ T_ T
Q =el—e) +6e; —12efy, 2, =€, —e],
- T_ T T _ T_ T T_19,T
2y =—ey —e3 +2e5, (25=e;, —e; +6eg —12ey,.

:—{:T:T :T}T
= =TI~ P R T=T]

0=0naol,..0f",

)

¢2[h(t)] :h(t)€9T+(hA[_h(t))(65T+61TO),
In this subsection, when the given K a delay
;s o=z Stee St MET E olole HMo] A|ARel SME oFdst =7 2 Ho{7| MA 129
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v, = Sym T_.T P
e

hael —e5 —eg 0
e ol e
leis] “lels] el

r T
€1
+ 01 G
L0
—sym{ Y72, +3Y 2, + 5V, 2

2ef —e) Rylef =

D
’ﬂ

017 [ef
€3 - 5
0 |+Symy |€15| G

o
)

h2
WH: 2 (R1+R2 elo

— QTR+ QIR 2, + Q3R 0, + QI5R 02,

+ QIR0+ QI3R,0, + D5 R0,

*Q(eQT*egT) TR1(62T*€87> —

2( eg) R2<e3 es)
T
4( +67T 3615) R(§ +67T 3615
T 1 r
— 4| = +€8 3eH R 5 el
r o1
4( ) tel— 3em)1%(5 T el —3el;
ol
4( €3 +68 —3e 14) R2(5 +€8T—361T4
0 T
Oy = Sym €1T; G|h(t)e T}
6] h(t)eg
1,
T
64 0
+Sym T T P 0

+(hy=nh(t) 2" (t—h(t)) Dx(t—h(t))
—h(t)x"(t—h(t) Dx(t—h(t)),
U=w, +W, N=Ae]+BKej—el.

Now, following theorem is given as a stability criterion

for the system (4).

Theorem 1. Given a scalar h,; >0 and gain K the

system (4) is asymptotically stable if there exist positive

130

Q(eQT* 677) TR2(6

e7)

T
2 7677)

R4n X 471,’ Ge Rf}n X 311’

definite matrices PE Q7R <,
R17 R27 H7D€RTL><VL’ any maffj(:es Cek(mxﬁn, SE]RSnXSn’

Krasovskii functional candidate:

s

/.
0=

el
t>=/tf,ll,/ EHIIC BRI
t /ff v) Ryzx(v) dvduds,

S

Rza:( )dvduds,

t)=/
t—hy,
ft hl,/\t hy*

z(s)

/‘ I /:i(u)du ds.
t—h(t

El

T s)Hi(t)ds,
f h(t)

h(t)(hy—h(t)z”

=(hy,—h(t

V(t) =

Y, ER"“¥"(i=1,2,3) satisfving the following conditions

hold:
- [diag{R,,3R,5R;} K
7= * diag{Ry,3Ry5R,} |~ ¥ ©)
- |diag{Z,32,52,} C
% [ + diag{2,32,52)| ~ ©
N Oy +P)N*t <0, M
-NJ‘T(@[]“[]“"W)NL NLT)/lT NLT)/QT NLT)GT'
hiar
. P 0 <0. (8
3hy,
1
* * * —
5hMH

Proof. Let wus consider the following Lyapunov-

At ©
where
z(t) T x(t)
x(t*hM) x(t*hM)
I/l(t)_ ‘/; h; ( )ds P /t h; m(S)dS ’
f w)duds ff . 1/ w)duds

(t—n(t)Dx(t—h(t)).



The time-derivatives of V,(t)(i=1,..,5) are written

by
V(t)
() ! m(fﬁt,)“[)
z(t—h,,) ‘ '
= Sym x(t)—x(t—h,,) P /t . x(s)ds
ha@ — [ a(s)ds
L /t*h,u /t h”/; w)duds
=@\ symi| S|P LT L ew. a0
61 €3 e; teg
h 11(1 T*%T ¢2[h(t)]
RELD) T Jx(t) N t_hM)]I a(t h/w)J
0 =[5] i) [w—m Qilt—hy)
eT r eT e r e
gT(t)( e}} Qe}}—leﬂ QL?} )ﬁ(t), (11
. _ z(t)7 x(t [ 2(s)]7 Jz(s)
0= (S| mli) - f ol o] Az s
L OTz(s)] T Ja(s)
J oy Lits)] Aats)|® (12)
I./4(t): hM .T f f Rlx u)duds
t—h(t s

t—h(t t—h(t) -
— / f le )duds 13)
t—hy

s

—(ha—h(t ))/tih() T(s)Ryx(s)ds,

[./(t _ M T /f h(t /f h(t
t—hy t—hy -
f / I(u Rzl u)duds
t—h( u

SCY L

sz u)duds

(14)

Considering h(t) =1 leads to the Vi(t)(i=6,7,8) as

2

, ()7 [=(t)
V=0 |a o
0 0
BIMEl BlolTim B4WS S5t M2  olole] Mof AIARS] S okt X
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z(s)
t 01" li: w)du
+2/ z(t)| G /3 (w)d ds
t—h(t) (t) ffg;(u)du
e T eTi 5 01" 65T
—gT(t){ 0| G 01 +Sym{ €1T5 G|h(t)el eT}Hé(t)
0 0] el h(t)el

)xT( ) Hi(t )
)(1—h(6)2"(t—n(t ))H:b(t h(t))

- f e 7(s) Hi(s)ds— (hy—h(t))x (¢) Hi(t),
t—h(t)
(16)

Vilt) = {h( £)(hy = h(t) +h(t) (= h(1) }
e’ (t=h(t)) Dr(t—h(t))
(hu h(t)a"(t—n(t)) Dr(t—h(t))

—h(t)a"(t=h(t)) Dr(t—h(t)).

amn

By applying Lemma 1, Egs. (12)-(14) are rewritten by

Aol

<— WgT(t) (2722, +21322,+ 51525, }¢(t),  (18)

S A

<- hM_lh(t) TW{=]z2,+ 51325, + 2l 25 ¢ (1),
(19)

f / s) Ryx(s)dsdu

<;]L{E—6?>R(—T) 20)

+4(%e{+€7T 3615) R1( € +e7 —3613)}5(75),

Hoi7| A 131
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t—h(t t—h(t) -
/ / Rlz( )dsdu
t—hy, 1

w

=2 (eQ—eg’) RACETY
+4(geg+eg—seu) (b el st oo
21)
t—h(t t—h(t
/ / RQT( )dsdu
=—¢ (){ 2(e 2767) Ryfes —ef)
+4(%€2T+€7T_3613) R2(; 2T+€7T 3613)}5(”’
(22)
t—hy, t— hu .
_ f f s) Ryr(s)dsdu
t—ht
<—¢ (t){?(effeg) Ryfef —e)
+4(%€5T+68T 3614) Rz(*es +eg— 3614)}5(”’
(23)

—(hM—h(t))/i}(t)x'T(s)Rl':c(s)ds

IA
\
—
>
<

(04)
t . .
fh(t)/tihmxT(s)RQx(s)dsS

_ ( har

m—l §T(t){Q4TRZQ4 +0T3R,0, +96T53296}§(t)7

(25)

—/t v 5)ds

gfﬁ " (1) {2 HR, + QI3 H, + Q5 H,JE(t),  (26)

h(t)
by

Eq. (27) can be obtained from Egs. (18) and (19).

1(1
E(gf (t)
1
1— a
1

- (W="Z= Je(t) @7
]\J

Let define o= Using Lemma 3, the following

{2725, + 21325, + 21575, )¢ (t)

=1, +5§3252+5§‘5253}§(t))

In a similar way, the following Eq. (28) can be
obtained from Egs. (24) and (25)

132

- 1)5%) (TR 0, + Q3R 0, + QI5R 2, }¢ (1),

() {02IR 2+ QI3R 0, + OI5R 0, }¢(t)
1

1= fT(t){Q4TR2Q4+Q:)T3R205 +-QGT5R2QG}§(15)

«
T ({0 R 2, + Q3R 0, + QI5R 0, }¢(t)
T ({0 R, + QI3R,0, + QIS R0 ¢ (1)
=—¢"W{R"R0e()
+e" ({0 R0 + Q3R 02, + QTS R 2y} (1)
+eT () { TR0, + QT3R5 + OIS RO Je (1),

A+t

(28)

At this time, it should be noted that the LMIs (5) and
(6) hold to Egs. (27) and (28).

According to the paper [12], for any matrices
Y,ER"P"(i=1,2,3), it holds

H2,—h(t)Y) " H (H2,—h()Y;) =0 (i=1,2,3),

1
0L

which satisfy the following inequality

QFHOQ, <— VI, —Ql'Y,+h(t) 2 H 10,

_ 1
h(t)

Therefore, from (26), we can obtain the following
inequality

t . .
—/ 2 %(s) Hz(s)ds
t—h(t)

< —T() {sym{ Y102, +3 Y02, +5 V102, } (29)
+h(O)(YTH 'Y, + VBH 'Y, + YI5H 'Y,) J(t).

By combining Egs. (11)-(29), a upper bound of the

V(t) has

Wt) < CT(8)(Oy, ) +h () T+P)C(2), (30)

3
where I'= 2(21‘— 1)

i=1

Y/H 'Y,

From (30), the stability condition for system (4) can
be derived as

Since the condition (31) 1is affine convex in
h(t)E€(0,h,,], Eq. (30) is equivalent to
Onhwy=o T¥<0, (32)



Ou@)y=n, ] Thad T¥<0. (33)

Considering the following zero equation NE(t) =0,
where N=Ae! + Ajel —el, and Lemma 2, Egs. (32) and

(33) are equivalent to the follow as

N O 4y =g TEINT <0, (34)

N Oy =p, ) Hhad +E)N' <0. (35)

By using Fact 1, Eq. (35) can be equivalent to the
LMI (8). Therefore, if the LMIs (7) and (8) hold, then
the system (4) is asymptotically stable. O

3.2 Sampled-data controller design

In this subsection, the controller design for system (3)
will be derived based on Theorem 1. Now, the following
theorem is given as a stabilization condition for the
system (3).

Theorem 2. For given scalar h,; >0 and a >0, the
system (3) with the state feedback
u(t)=Kx(t—h(t)) is asymptotic stable if there exist
positive  definite PERM I Qe R,
ZER™M GER™ R, R, H, DER"™" and any
matrices XER"™ ", YER™ " and )AQER"X“”(i:LZ,B)
satistving the LMlIs (5), (6) and

controller

matrices

(:)[h(t):[)] +':P+Sym{(el +a615)N}< 0, (36)
[ Onw=nd +¥ ] Froopr 7T
+Sym{(el+ael5)N} ! 2 3

M . <0. (37
3h,,
1 ~
* * * —_
B

Then, the gain K can be calculated by YX '.
Proof. By Lemma 2, the conditions (34) and (35) can
be rewritten by

(Opy—o +¥) +N"M"+MN <0, (38)

(O n,y) T had +0) + NTM"+ MN<0 (39)

edE 2otz z e ST HMEY & & ot

g & clole Mo AIARIS] SHAE okyat =21
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for any matrix M.
Here, to design the controller gain A, the matrix M
would be defined as (e,U+ae,;U), where any matrix

U=R"™ "™ and the positive scalar «. Let us define
U '=X, and then, pre-and post-multiplying both side
of Egs. (38) and (39) with X,; where X,= diag{X,...,X},

i facters

and defining AX= Y lead to

é[h(,)zo]+@+Sym{(el+aels)fv}< 0, (40)
O )1yl 0 Sym{(e, +ae,;) Np< 0, (41)
where

—7_— =7 — A =T ~
XigW X5 =Y, Xl X5 =1, Xi50),4)X15 = O
N=AXe+BYel — Xel.

After this, there is need of replacing X_4TP7
X/QX, X]ZX, XR.X, XR,X, X.GX, XHX, XDX
and XY;(i=1,2,3) with P, Q Z R,, R, G, H, D and

)/;(72:1,2,3), respectively. Finally, by Fact 1, the
condition (41) is equivalent to the LMI (37). Therefore, if
the LMIs (36) and (37) hold, then the system (3) is
asymptotically stable under the gain A= YX . O

Remark 1. In the field of delay-dependent stability
analysis for the system (4), to the best of the authors's
knowledge, Jensen inequality proposed in [11] and
Wirtinger-based integral inequalities in [12] are the
most useful lemmas of the existing methods to reduce
less conservatism of stability criteria. By constructing the
different
auxiliary

Lyapunov-Krasovskii  functionals and using

function-based integral inequalities  [13],
further improved results will be obtained in comparison

with the previous results.

4. Numerical examples
In this section, three numerical examples will be
shown to illustrate the effectiveness and superiority of

the proposed results in Theorems 1 and 2.

Example 1. Consider the system (4) with following
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parameters:

1 757
A= [8—0,1]’ B= {—g.l]’ A= [?17;] '

For this example, by applying Theorem 1(Th. 1) to
the system (4), maximum allowable delay bounds h,~
1.725 can be obtained. In Table 1, the comparisons with
the proposed results are listed. Therefore, the superiority
of the proposed result in Theorem 1 can be confirmed.

§ 1 ARMXA FH 518 g by, CIF D.
Table 1 Allowable upper bound h,, (Example 1).

Methods | [5] [6] [7] (8] | Th. 1 | Th. bounds
hy, | 1695 | 1695 | 172 | 1721 | 1725 | 17294

Example 2. Also, let us consider the system (4) with
the IEEE 4-machine 11-bus system (see Fig. 2 in [15])
and take 4-Generators as the balance node, using model
analysis method so that the state matrix A and the
time-delay matrix Ay are as follows

0 0 0 3769 0 0
0 0 0 0 3769 0
q_| 0 0 0 0 0 3769
—0.073 0.065 0.004 —0.73 0.272 0.076
0.058 —0.087 0.009 1.160 —0.343 —0.134
0.008 0.011 —0.082—0.02 0.047 —0.554
0 0 0 0 0 0
0 0 0 0 0 0
400 00 0 0
=0 0 0 —0234-0.839 0.010
0—0.00110.001 0.348 —1.362—0.138
0 0001 0 0049 —0.29 —0.638

By applying Theorem 1 with above parameters to the
system (4), maximum allowable delay bounds h=0.603
can be obtained. In Figs. 3 and 4, the trajectories of
z(t)and z(t,) in system (4) are shown, respectively.

Example 3. Finally, let us consider the system (3)
with uncertainties and following system parameters:

105 B 1+92}
Ai[gl—l}’ Bi[ -1 |

where [ g; || 0.1, | g,|| <03. It can be confirmed
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1 10 20 120 110 1

G { 41 % Gs

G2 Ga

& 2 IEEE 4-machine 11-bus AlAE] A=Fe (Ol& 2).
Fig. 2 IEEE 4-machine 11-bus system scheme (Example 2).
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Fig. 3 The trajectories of z(t) in system (4) with upper
bounds h,,~0.603 (Example 2).
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Fig. 4 The trajectories of z(t,) in system (4) with upper
bounds h,,~0.603 (Example 2).

(t,) #=

that the system (3) with uncertainties is stable by

utilizing the sampled-data control (2). Maximum

allowable delay bounds h,~=0.753 and the controller gain



K=[-2.5547, -0.6350] can be obtained by Theorem 2
with «=1.2. And, the results obtained by the work [16]
are the bounds h,=0.35 and the controller gain K=
[-2.6884, -0.6649]. The trajectories of x(¢t) and Kz (t,)
in system (3) are shown in Figs. 5-6, respectively. Also, by
applying Theorem 1 with the controller gain of the proposed
result in [16] and above parameters to the system (4),
maximum allowable delay bounds h,=0.6495 can be obtained
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o) 5 10 15 20 25 30 35 40 45 50
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IW 5 h,=0.7537 K=[-25547, 0635012 WSt AAE 3
9 Kx(t,) #A (a=12 oAl 3).

Fig. 5 The trajectories of Az (t,) in system (3) with h,,
=0.753 and A=[-2.5547, -06350] (a=1.2, Example 3).
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Fig. 6 The trajectories of Axz(t,) in system (3) with h,,
=0.753 and K=[-2.5547, -0.6350] (Example 3).

g 2 ARM XA = 518 G by, CIA3).
Table 2 Allowable upper bound h,, (Example 3).

Methods [16] [17] [18] [19] Th. 1
Iy 0.35 | 0.4476 | 0.602 0.6409 | 0.6495
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and the comparison of the results obtained by Theorem 1 with
the previous results are conducted in Table 2.

5. Conclusions

In this paper, the stability criteria and controller design
for the sampled-data control systems were proposed.
Firstly, by constructing the augmented Lyapunov-
Krasovskii functionals and utilizing mathematic technique
such as auxiliary function-based integral inequalities,
Finsler's lemma and reciprocal convexity lemma, the
stability conditions were introduced in Theorem 1.
Secondly, based on the result of Theorem 1, the
stabilization criterion for sampled-data control systems was
proposed in Theorem 2. The examples show the reduction
of the conservatism compared with previous research. By
using auxiliary function-based integral inequalities instead
of the other mathematic lemmas such as Wirtinger-based
integral inequalities and Jensen inequlities, the range of
allow sampling periods has been extended.
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