DOI QR코드

DOI QR Code

Comparison of viscous and kinetic dynamic relaxation methods in form-finding of membrane structures

  • Labbafi, S. Fatemeh (Department of Civil Engineering, University of Birjand) ;
  • Sarafrazi, S. Reza (Department of Civil Engineering, University of Birjand) ;
  • Kang, Thomas H.K. (Department of Architecture & Architectural Engineering, Seoul National University)
  • Received : 2016.10.31
  • Accepted : 2016.12.22
  • Published : 2017.01.25

Abstract

This study focuses on the efficiency and applicability of dynamic relaxation methods in form-finding of membrane structures. Membrane structures have large deformations that require complex nonlinear analysis. The first step of analysis of these structures is the form-finding process including a geometrically nonlinear analysis. Several numerical methods for form-finding have been introduced such as the dynamic relaxation, force density method, particle spring systems and the updated reference strategy. In the present study, dynamic relaxation method (DRM) is investigated. The dynamic relaxation method is an iterative process that is used for the static equilibrium analysis of geometrically nonlinear problems. Five different examples are used in this paper. To achieve the grading of the different dynamic relaxation methods in form-finding of membrane structures, a performance index is introduced. The results indicate that viscous damping methods show better performance than kinetic damping in finding the shapes of membrane structures.

Keywords

References

  1. Alamatian, J. (2012), "A new formulation for fictitious mass of the dynamic relaxation method with kinetic damping", Comput. Struct., 90-91, 42-54. https://doi.org/10.1016/j.compstruc.2011.10.010
  2. Al-Shawi, F.A.N. and Mardirosian, A.H. (1987), "An improved dynamic relaxation method for the analysis of plate bending problems", Comput. Struct., 27(2), 237-240. https://doi.org/10.1016/0045-7949(87)90091-5
  3. Barnes, M.R. (1988), "Form-finding and analysis of prestressed nets and membranes", Comput. Struct., 30(3), 685-695. https://doi.org/10.1016/0045-7949(88)90304-5
  4. Brew, J.S. and Brotton, D.M. (1971), "Non-linear structural analysis by dynamic relaxation", Int. J. Numer. Methods Eng., 3(4), 463-483. https://doi.org/10.1002/nme.1620030403
  5. Bunce, J.W. (1972), "A note on the estimation of critical damping in dynamic relaxation", Int. J. Numer. Methods Eng., 4(2), 301-303. https://doi.org/10.1002/nme.1620040214
  6. Cassell, A.C. and Hobbs, R.E. (1976), "Numerical stability of dynamic relaxation analysis of non-linear structures", Int. J. Numer. Methods Eng., 10(6), 1407-1410. https://doi.org/10.1002/nme.1620100620
  7. Cundall, P.A. (1976), "Explicit finite-difference method in geomechanics", Proceedings of the International Conference on Numerical Methods in Geomechanics, Blacksburg, 132-150.
  8. Frankel, S.P. (1950), "Convergence rates of iterative treatments of partial differential equations", Math. Tables Aids Comput., 4(30), 65-75. https://doi.org/10.2307/2002770
  9. Frieze, P.A., Hobbs, R.E. and Dowling, P.J. (1978), "Application of dynamic relaxation to the large deflection elasto-plastic analysis of plates", Comput. Struct., 8(2), 301-310. https://doi.org/10.1016/0045-7949(78)90037-8
  10. Kadkhodayan, M., Alamatian, J. and Turvey, G.J. (2008), "A new fictitious time for the dynamic relaxation (DXDR) method", Int. J. Numer. Methods Eng., 74(6), 996-1018. https://doi.org/10.1002/nme.2201
  11. Levy, R. and Spillers, W.R. (2003), Analysis of Geometrically Nonlinear Structures, 2nd edition. ed. Springer, Dordrecht, New York.
  12. Lewis, W.J. (2003), Tension Structures: Form and Behaviour, Thomas Telford.
  13. Munjiza, A., Owen, D.R.J. and Crook, A.J.L. (1998), "An M(M-1K)m proportional damping in explicit integration of dynamic structural systems", Int. J. Numer. Methods Eng., 41(7), 1277-1296. https://doi.org/10.1002/(SICI)1097-0207(19980415)41:7<1277::AID-NME335>3.0.CO;2-9
  14. Nabaei, S.S., Baverel, O. and Weinand, Y. (2013), "Mechanical form-finding of the timber fabric structures with dynamic relaxation method", Int. J. Space Struct., 28(3-4), 197-214. https://doi.org/10.1260/0266-3511.28.3-4.197
  15. Otter, J.R.H. (1966), "Dynamic relaxation compared with other iterative finite difference methods", Nucl. Eng. Des., 3(1), 183-185. https://doi.org/10.1016/0029-5493(66)90157-9
  16. Papadrakakis, M. (1981), "A method for the automatic evaluation of the dynamic relaxation parameters", Comput. Methods Appl. Mech. Eng., 25(1), 35-48. https://doi.org/10.1016/0045-7825(81)90066-9
  17. Qiang, S. (1988), "An adaptive dynamic relaxation method for nonlinear problems", Comput. Struct., Special Issue: Comput. Eng. Mech., 30(4), 855-859.
  18. Rezaiee-Pajand, M. and Alamatian, J. (2010), "The dynamic relaxation method using new formulation for fictitious mass and damping", Struct. Eng. Mech., 34(1), 109-133. https://doi.org/10.12989/sem.2010.34.1.109
  19. Rezaiee-Pajand, M. and Alamatian, J. (2005), "Best time step for geometric nonlinear analysis using dynamic relaxation", Modares J. Civ. Eng., 19.
  20. Rezaiee-Pajand, M. and Taghavian-Hakkak, M. (2006), "Nonlinear analysis of truss structures using dynamic relaxation (research note)", Int. J. Eng.-Trans. B Appl., 19(1), 11-12.
  21. Rezaiee-pajand, M., Kadkhodayan, M., Alamatian, J. and Zhang, L.C. (2011), "A new method of fictitious viscous damping determination for the dynamic relaxation method", Comput. Struct., 89(9-10), 783-794. https://doi.org/10.1016/j.compstruc.2011.02.002
  22. Rezaiee-Pajand, M. and Rezaee, H. (2014), "Fictitious time step for the kinetic dynamic relaxation method", Mech. Adv. Mater. Struct., 21(8), 631-644. https://doi.org/10.1080/15376494.2012.699603
  23. Rezaiee-Pajand, M. and Sarafrazi, S.R. (2011), "Nonlinear dynamic structural analysis using dynamic relaxation with zero damping", Comput. Struct., 89(13-14), 1274-1285. https://doi.org/10.1016/j.compstruc.2011.04.005
  24. Rezaiee-Pajand, M. and Sarafrazi, S.R. (2010), "Nonlinear structural analysis using dynamic relaxation method with improved convergence rate", Int. J. Comput. Method., 7(4), 627-654. https://doi.org/10.1142/S0219876210002386
  25. Rezaiee-Pajand, M., Sarafrazi, S.R. and Rezaiee, H. (2012), "Efficiency of dynamic relaxation methods in nonlinear analysis of truss and frame structures", Comput. Struct., 112-113, 295-310. https://doi.org/10.1016/j.compstruc.2012.08.007
  26. Rushton, K.R. (1969), "Dynamic-relaxation solution for the large deflection of plates with specified boundary stresses", J. Strain Anal. Eng. Des., 4(2), 75-80. https://doi.org/10.1243/03093247V042075
  27. Spillers, W.R., Schlogel, M. and Pilla, D. (1992), "A simple membrane finite element", Comput. Struct., 45(1), 181-183. https://doi.org/10.1016/0045-7949(92)90355-4
  28. Topping, B.H.V. and Ivanyi, P. (2008), Computer aided design of cable membrane structures, Saxe-Coburg Publications, Kippen, Stirlingshire, Scotland.
  29. Veenendaal, D. and Block, P. (2012), "An overview and comparison of structural form finding methods for general networks", Int. J. Solid. Struct., 49(26), 3741-3753. https://doi.org/10.1016/j.ijsolstr.2012.08.008
  30. Wood, R.D. (2002), "A simple technique for controlling element distortion in dynamic relaxation formfinding of tension membranes", Comput. Struct., 80(27-30), 2115-2120. https://doi.org/10.1016/S0045-7949(02)00274-2
  31. Wood, W.L. (1971), "Note on dynamic relaxation", Int. J. Numer. Methods Eng., 3(1), 145-147. https://doi.org/10.1002/nme.1620030115
  32. Xu, R., Li, D.X., Liu, W., Jiang, J.P., Liao, Y.H. and Wang, J. (2015), "Modified nonlinear force density method for form-finding of membrane SAR atenna", Struct. Eng. Mech., 54(6), 1045-1059. https://doi.org/10.12989/sem.2015.54.6.1045
  33. Zhang, L.G. and Yu, T.X. (1989), "Modified adaptive dynamic relaxation method and its application to elastic-plastic bending and wrinkling of circular plates", Comput. Struct., 33(2), 609-614. https://doi.org/10.1016/0045-7949(89)90035-7

Cited by

  1. Finding buckling points for nonlinear structures by dynamic relaxation scheme vol.14, pp.1, 2017, https://doi.org/10.1007/s11709-019-0549-z
  2. Fluid-structure interaction of a tensile fabric structure subjected to different wind speeds vol.31, pp.6, 2017, https://doi.org/10.12989/was.2020.31.6.533
  3. Response of a Double Hypar Fabric Structure Under Varying Wind Speed Using Fluid-Structure Interaction vol.18, pp.4, 2021, https://doi.org/10.1590/1679-78256367