DOI QR코드

DOI QR Code

Estimation of small pan evaporation using temperature data

기온자료를 이용한 소형증발접시 증발량 산정

  • 임창수 (경기대학교 공과대학 토목공학과)
  • Received : 2016.09.06
  • Accepted : 2016.12.07
  • Published : 2017.01.31

Abstract

Pan evaporation has been used as an indirect method for the estimation of reservoir evaporation. Therefore, in this study, pan evaporation estimation equations using only temperature data were suggested in the case that available meteorological data is limited. A formula for estimating the pan evaporation were suggested by comparing estimated pan evaporation with measured pan evaporation in 12 study areas in Korea. The suggested pan evaporation equations were verified in 44 study areas by comparing not only with temperature-based equations but also with equations using other meteorological data (temperature, wind speed, relative humidity, and sunshine duration). The study results indicate that the suggested equations in this study provide much better pan evaporation estimates, compared with other temperature-based equations. Overall, the suggested equations provide appropriate pan evaporation estimates in most of 56 study areas. Therefore, the suggested equations using only temperature data in this study are considered appropriate for the estimation of pan evaporation in Korea especially in the case that available meteorological data is limited. In the future, using the air temperature and pan evaporation data measured at the reservoir, further research is needed to examine the applicability of suggested equations for the estimation of reservoir evaporation.

증발접시 증발량의 경우 저수지 증발량을 산정하는 간접적인 방법으로 유용하게 적용되고 있다. 따라서 본 연구에서는 이용할 수 있는 기상자료가 제한적인 경우에 기온자료만을 이용하여 증발접시 증발량을 산정하는 식을 제안하였다. 이를 위해서 전국 12개 지역에서 관측된 증발접시 증발량과 비교를 통해 제안식을 유도하였다. 또한 전국 44개 지역에 대해서 본 연구에서 제안된 증발접시 증발량 산정식을 다른 기온자료에 기초한 식들뿐만 아니라, 여러 종류의 기상자료(기온, 풍속, 습도, 일조시간)를 필요로 하는 식들과 비교하여 적용성을 파악하였다. 연구결과에 의하면 본 연구에서 제안된 증발량 산정식들은 다른 기온자료에 기초한 식들과 비교하여 전반적으로 양호한 증발접시 증발량 산정결과를 보였다. 본 연구에서 제안된 증발량 산정식의 경우 우리나라 56개 연구지역 대부분에서 전반적으로 양호한 증발접시 증발량 산정결과를 보였다. 따라서 본 연구에서 수정 제안된 기온자료만을 이용한 증발접시 증발량 산정식들은 우리나라에서 이용할 수 있는 기상자료가 제한적인 경우에 특히 적용성이 있는 것으로 판단된다. 추후에는 저수지에서 관측된 기온 및 증발접시 증발량 자료를 바탕으로 저수지 증발량 산정을 위한 제안식들의 적용성 검토연구가 필요하다.

Keywords

References

  1. Allen, R. G., Peretira, L. S., Raes, D., and Smith, M. (1998). Crop evapotranspiration-guidelines for computing crop water requirements. FAO irrigation and drainage paper 56, FAO, ISBN 92-5-104219-5.
  2. ASCE (1990). Evapotranspiration and irrigation water requirements. ASCE manuals and reports on engineering practice No. 70.
  3. New York, NY. USA. Assouline, S., and Mahrer, Y. (1993). "Evaporation from Lake Kinneret: 1 Eddy correlation system measurements and energy budget estimates." Water Resources Research, Vol. 29, pp. 901-910. https://doi.org/10.1029/92WR02432
  4. Bristow, K. L., and Campbell, G. S. (1984). "On the relationship between incoming solar radiation and daily maximum and minimum temperature." Agricultural and Forest Meteorology, Vol. 31, pp. 159-166. https://doi.org/10.1016/0168-1923(84)90017-0
  5. Burman and Pochop (1994). "Evaporation, evapotranspiration and climatic data." Developments in Atmospheric Science, Vol. 22, Elsevier Science, Amsterdam.
  6. Chen, D., Gao, G., Xu, C.-Y., Guo, J., and Ren, G. (2005). "Comparison of the Thornthwaite method and pan data with the standard Penman-Monteith estimates of reference evapotranspiration in China." Climate Research, Vol. 28, pp. 123-132. https://doi.org/10.3354/cr028123
  7. Cho, H. K. (1973). "On lake evaporation from climatological data in Korea." Journal of Korean Association of Hydrological Sciences, Vol. 6, pp. 5-12.
  8. Chow, S. D. (1992). "The urban climate of Shanghai." Atmospheric Environment, Vol. 26B, No. 1, pp. 9-15.
  9. Dalkilic, Y., Okkan, U., and Baykan, N. (2014). "Comparison of different ANN approaches in daily pan evaporation prediction." Journal of Water Resources and Protection, Vol. 6, pp. 319-326. https://doi.org/10.4236/jwarp.2014.64034
  10. DeBruin, H. A. R., and Keijman, J. Q. (1979). "The priestley-taylor evaporation model applied to a large, shallow lake in the Netherlands." Journal of Applied Meteorology, Vol. 18, pp. 898-903. https://doi.org/10.1175/1520-0450(1979)018<0898:TPTEMA>2.0.CO;2
  11. Dos Reis, R. J., and Dias, N. L. (1998). "Multi-season lake evaporation: energy-budget estimates and CRLE model assessment with limited meteorological observations." Journal of Hydrology, Vol. 208, pp. 135-147. https://doi.org/10.1016/S0022-1694(98)00160-7
  12. Droogers, P., and Allen, R. G. (2002). "Estimating reference evapotranspiration under inaccurate data conditions." Irrigation and Drainage Systems, Vol. 16, pp. 34-45.
  13. Han, J. S., and Lee, B. Y. (2006). "Measurement and analysis of free water evaporation at HaeNam paddy field." Korean Journal of Agricultural and Forest Meteorology, Vol. 7, No. 1, pp. 92-98.
  14. Hargreaves, G. H., and Samani, Z. A. (1985). "Reference crop evapotranspiration from temperature." Applied Engr. Agric., Vol. 1, pp. 96-99. https://doi.org/10.13031/2013.26773
  15. Henry, J. A., and Dicks, S. E. (1985). "Urban and rural humidity distribution: Relationships to surface materials and land use." Journal of Climatology, Vol. 5, pp. 53-62. https://doi.org/10.1002/joc.3370050105
  16. Horton, R. E. (1971). "Rainfall interception." Month. Weather Rev., Vol. 47, No. 9, pp. 603-623. https://doi.org/10.1175/1520-0493(1919)47<603:RI>2.0.CO;2
  17. Irmak, S., and Haman, D. Z. (2003). "Evaluation of five methods for estimating class A pan evaporation in a humid climate." Hort. Technology, Vol. 13, No. 3, pp. 500-508.
  18. Jauregui, E., Klaus, D., and Lauer, W. (1978). "On the estimation of potential evaporation in Central Mexico." Colloquium Geographicum, Band 13, pp. 163-190. Dummlers Verlag, Bonn.
  19. Jensen, M. E. (ed). (1974). Consumptive use of water and irrigation water requirements. Tech. Rpt. Com. Irr. Water Requirement, Irr. Drainage Div., Amer. Soc. Civil Eng., Davis, Calif.
  20. Kohler, M. A. (1954). Lake and pan evaporation. Water loss investigation Vol. 1, Lake Hefner studies. U.S. Geol. Surv. Paper 269.
  21. Kohler, M. A., Nordenson, T. J., and Fox, W. E. (1955). Evaporation from pans and lakes. U.S. Dept. Commerce Research. Paper. No. 38.
  22. Konstantinov, A. R. (1968). Evaporation in nature. Leningrad.
  23. Kuzmin, P. O. (1957). "Hydrophysical investigations of land waters." Int. Assoc. Sci. Hydrol. Publ., Vol. 3, pp. 468-478.
  24. Lage, M., Bamouh, A., Karrou, M., and Mourid, M. E. (2003). "Estimation of rice evapotranspiration using a microlysimeter technique and comparison with FAO Penman-Monteith and pan evaporation methods under Moroccan conditions." Agronomie, Vol. 23, pp. 625-631. https://doi.org/10.1051/agro:2003040
  25. Lamoreux, W. W. (1962). "Modern evaporation formula adapted to computer use." Monthly Weather Rev., Vol. 90, pp. 26-28. https://doi.org/10.1175/1520-0493(1962)090<0026:MEFATC>2.0.CO;2
  26. Lawrimore, J. H., and Peterson, T. C. (2000). "Pan evaporation trends in dry and humid regions of the United States." Journal Hydrometeor., Vol. 1, pp. 543-546. https://doi.org/10.1175/1525-7541(2000)001<0543:PETIDA>2.0.CO;2
  27. Lee, K. H., and Kim, M. I. (1985). "Seasonal variations of the evaporation in Korea." Journal of Korean Association of Hydrological Sciences, Vol. 18, pp. 243-251.
  28. Linacre, E. T. (1977). "A simple formula for estimating evaporation rates in various climates, using temperature data alone." Agricultural Meteorology, Vol. 18, pp. 409-424. https://doi.org/10.1016/0002-1571(77)90007-3
  29. Linacre, E. T. (1993). "Data-sparse estimation of lake evaporation using a simplified Penman equation." Agric. and Forestry Meteor., Vol. 64, pp. 237-256. https://doi.org/10.1016/0168-1923(93)90031-C
  30. Makkink, G. F. (1957). "Testing the Penman formula by means of lysimeters." Journal of the Institution of Water Engineers, Vol. 11, pp. 277-288.
  31. Meyer, A. F. (1915). "Computing runoff from rainfall and other physical data." Trans. Am. Soc. Civ. Eng., Vol. 79, pp. 1055-1155.
  32. Nash, J. E., and Sutcliffe, J. V. (1970). "River flow forecasting through conceptual models, 1. A discussion of principles." Journal of Hydrology, Vol. 10, pp. 282-290. https://doi.org/10.1016/0022-1694(70)90255-6
  33. Nullet, D., and Juvik, J. O. (1994). "Generalised mountain evaporation profiles for tropical and subtropical latitudes." Singapore Journal of Tropical Geography, Vol. 15, No. 1, pp. 17-24. https://doi.org/10.1111/j.1467-9493.1994.tb00242.x
  34. Penman, H. L. (1948). "Natural evaporation from open water, bare soil, and grass." Proc. Roy. Soc. London, Vol. A193, pp. 120-146.
  35. Penman, H. L. (1956). "Evaporation: an introductoty survey." Netherlands Journal of Agricultural Science, Vol. 4, pp. 9-29.
  36. Pochop, L., Borrelli, J., and Hasfurther, V. (1984). Design characteristics for evaporation ponds in Wyoming. Wyoming Water Research Center Final Report, Wyoming.
  37. Priestley, C. H. B., and Taylor, R. J. (1972). "On the assessment of the surface heat flux and evaporation using large-scale parameters." Monthly Weather Review, Vol. 100, pp. 81-92. https://doi.org/10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2
  38. Qiu, G. Y., Miyamoto, K., Sase, S., Gao, Y., Shi, P., and Yano, T. (2002). "Comparison of the three temperature model and conventional models for estimating transpiration." Japanese Agricultural Research Quarterly, Vol. 36, No. 2, pp. 78-82.
  39. Rohwer, C. (1931). Evaporation from free water surfaces. USDA Tech. Bul. No. 271.
  40. Romanenko, V. A. (1961). Computation of the autumn soil moisture using a universal relationship for a large area. Proceedings Ukrainian Hydrometeorological Research Institute (Kiev) 3.
  41. Rotstayn, L. D., Roderick, M. L., and Farquhar, G. D. (2006). "A simple pan-evaporation model for analysis of climate simulations: Evaluation over Australia." Geographical Research Letters, Vol. 33, pp. L17715. https://doi.org/10.1029/2006GL027114
  42. Shirsath, P. B., and Singh, A. K. (2010). "A comparative study of daily pan evaporation estimation using ANN, regression and climate based models." Water Resour. Manage., Vol. 24, pp. 1571-1581. https://doi.org/10.1007/s11269-009-9514-2
  43. Thornthwaite, C. W., and Holzman, B. (1939). "The determination of land and water surfaces." Month. Weather Rev., Vol. 67, pp. 4-11. https://doi.org/10.1175/1520-0493(1939)67<4:TDOEFL>2.0.CO;2
  44. Valiantzas, J. D. (2006). "Simplified versions for the Penman evaporation equation using routine weather data." Journal of Hydrology, Vol. 331, pp. 690-702. https://doi.org/10.1016/j.jhydrol.2006.06.012
  45. Yague, C., Zurita, E., and Martinez, A. (1991) "Statistical analysis of the Madrid urban heat island." Atmospheric Environment, Vol. 25B, No. 3, pp. 327-332.