DOI QR코드

DOI QR Code

Anisotropy of Softwood Structural Lumber Using The Elastic Modulus Determined by The Ultrasonic Nondestructive Method

초음파 비파괴 시험법을 이용한 탄성계수의 산정을 통한 침엽수 구조용재의 이방성에 관한 기초연구

  • 오세창 (대구대학교 생명환경대학 산림자원학과)
  • Received : 2016.09.28
  • Accepted : 2016.11.08
  • Published : 2017.01.25

Abstract

The aim of this paper is to present the modulus of elasticity of $E_L$, $E_R$, $E_T$ along three principal axis of softwood dimension lumber by nondestructive method. Ultrasonic measurement was carried out on defect free wood samples taken by the Japanese Larch, SPF (spruce-pine-fir) and Hem-fir $2{\times}4s$. The ultrasound velocities were measured to calculate young's moduli and it was derived elastic constants for each wood samples using the ultrasound velocities and densities of wood. From the test, $E_L$ was much greater than $E_R$ and $E_T$. $E_R/E_T$ ratios were about 1.3. The high density wood had high young's moduli in three principal axis and the difference in young's moduli between species was greater in transverse direction than longitudinal direction. The anisotropy of the lumber was presented through the calculated elastic moduli and compliances matrix in diagonal term were determined by inverting the stiffness matrix.

본 연구의 목적은 목재의 세 주요 축 방향에 대하여 각 방향별 탄성계수를 비파괴적으로 측정하여 이에 따른 목재의 이방성을 검토해 보고자 하였다. 결점이 없는 SPF (spruce-pine-fir)와 Hem-fir 및 낙엽송재에 대하여 무결점 시험편을 채취하고 각 시험편에 대해 세 방향에서 초음파 속도를 측정한 다음, 이 속도와 각 재료의 밀도를 이용하여 산정된 탄성계수를 비교하였다. 시험 결과 초음파속도 및 탄성계수는 방향별로 목재의 길이방향, 방사방향, 접선방향의 순으로 나타났으며, 밀도가 높을수록 각 방향별 탄성계수가 더 높게 나타났다. 수종 간에 있어서 길이방향의 탄성계수의 차이보다 방사방향, 접선방향의 차이가 더 크게 나타났다. 산정된 탄성계수를 사용하여 재료의 이방성을 비교하여 제시하였으며, 이를 통해 강성매트릭스의 대각선 항을 산정하였다.

Keywords

References

  1. Arx, G.V., Arzac, A., Jose, M.O., Fonti, P. 2015. Assessing Conifer Ray Parenchyma for Ecological Studies: Pitfalls and Guidelines. Front Plant Science 6, article 1016: 1-10.
  2. Bergander, A., Salme, L. 2000. Variations in transverse fibre wall properties: relations between elastic properties and structure. Holzforschung 54(6): 654-660. https://doi.org/10.1515/HF.2000.11
  3. Bodig, J., Jayne, B.A. 1982. Mechanics of wood and wood composites. Van Nostrand Reinhold, New York, p. 712.
  4. Bucur, V., Archer, R.R. 1984. Elastic constants for wood by an ultrasonic method. Wood Science and Technology 18: 255-265. https://doi.org/10.1021/es00126a720
  5. Bucur, V. 1995. Acoustics of wood. CRC Press, Boca Raton, p. 284.
  6. Bucur, V., Declercq, N.F. 2006. The anisotropy of biological composites studied with ultrasonic technique. Ultrasonics 44: 829-831. https://doi.org/10.1016/j.ultras.2006.05.203
  7. Castagnee, J., Jenkins, T., Sachse, W., Baste, S. 1990. Optimal determination of the elastic constants of composite materials from ultrasonic wave-speed measurements. Journal of Applied Physics 67(6): 2753-2761. https://doi.org/10.1063/1.345441
  8. Jeong, S.-H., Park, B.-S. 2008. Wood properties of useful tree species grown in Korea. Korea Forest Research Institute Research Paper No. 29. p. 390.
  9. Keunecke, D., Sonderegger, W., Pereteanu, K.. Luhi, T., Niemz, P. 2007. Determination of Young's and shear moduli of common yew and Norway spruce by means of ultrasonic waves. Wood Science and Technology 41(4): 309-327. https://doi.org/10.1007/s00226-006-0107-4
  10. Kollmann, F.F.P., Cote, W.A. 1968. Principles of wood science and technology: Solid wood. Springer-Verlag, New York, p. 592.
  11. Sakai, H., Takagi, K., Minamisawa, A. 1987. Ultrasonic properties in wood. Japanese Journal of Applied Physics, 27. Supplememnt 27-1: 55-57.