DOI QR코드

DOI QR Code

PHPP를 활용한 조적, 콘크리트, 목조 레이어 구성별 표준주택 냉·난방 에너지 요구량 평가

Heating and Cooling Energy Demand Evaluating of Standard Houses According to Layer Component of Masonry, Concrete and Wood Frame Using PHPP

  • 강유진 (숭실대학교 건축학부 건축환경재료연구실) ;
  • 이준희 (숭실대학교 건축학부 건축환경재료연구실) ;
  • 이화영 (숭실대학교 건축학부 건축환경재료연구실) ;
  • 김수민 (숭실대학교 건축학부 건축환경재료연구실)
  • Kang, Yujin (Building Environment and Materials Lab, School of Architecture, Soongsil University) ;
  • Lee, Junhee (Building Environment and Materials Lab, School of Architecture, Soongsil University) ;
  • Lee, Hwayoung (Building Environment and Materials Lab, School of Architecture, Soongsil University) ;
  • Kim, Sumin (Building Environment and Materials Lab, School of Architecture, Soongsil University)
  • 투고 : 2016.05.18
  • 심사 : 2016.10.24
  • 발행 : 2017.01.25

초록

건축물에서 냉방과 난방에 많은 양의 에너지가 소요되고 있다. 건축은 $CO_2$ 발생을 줄이고 에너지 소비 저감을 위하여 냉 난방 부하를 최소화할 필요성이 있다. 그리고 최근 주거문화는 친환경적이고 실내 쾌적성을 중시하는 방향으로 변화하면서 단독주택의 수요가 증가하고 있다. 국내 단독주택의 구조는 크게 조적조, 콘크리트조, 목조 주택으로 구분할 수 있다. 따라서 본 논문은 세 가지 구조방식(조적, 콘크리트, 목조)으로 구성된 동일 면적 단독주택의 냉 난방 부하와 에너지 요구량을 분석하였다. 구조방식별 벽체, 지붕, 바닥 레이어를 구성하였고, 각 레이어의 열관류율(U-value)은 목조 벽체와 같이 스터드를 고려해주기 위하여 PHPP 계산법을 이용하였다. 또한 스터드 유무에 따른 차이를 비교 분석하기 위하여 목조 벽체에서 스터드를 고려하지 않은 경우(비 스터드)를 분석하였다. 분석은 엑셀을 기반으로 자체 개발한 냉 난방 부하 산출 프로그램(CHLC)과 ECO2를 이용하였다. 냉 난방 부하와 에너지 요구량 결과, 목조 구조가 가장 높은 결과를 보였고 콘크리트 구조는 두 번째로 높은 값을 유지하는 것을 확인하였다. 두 구조방식은 에너지소비 측면에서 불리하다고 판단하였다. 결론적으로, 동일한 조건에서의 조적 구조는 다른 구조방식에 비하여 냉 난방 부하 및 에너지 요구량에 있어 유리하며, 목조 구조에서 스터드로 인한 열교를 제외한다면 에너지소비를 줄일 수 있다고 판단되었다.

A lot of the energy are consumed on heating and cooling in buildings. The buildings need to minimize the heating and cooling loads for $CO_2$ emissions and energy consumption reduction. In recently, also demand of detached houses were increase while the residential culture was changed. The structure of the domestic detached houses can be divided into masonry, concrete, wood frame houses. Therefore, in this study, the heating and cooling load and energy demand were analyzed on the equal area detached house consisting of three structural methods (Masonry, Concrete, Wood frame). Layer of wall, roof, and floor were composited by structure. Thermal transmittance (U-value) of each layer was using the PHPP calculation for considering stud, such as the wood frame wall. In addition, the case of without considering for studs in wood frame wall (Non-studs) was analyzed in order to compare the difference between studs or not. Analysis was performed using self-developed heating and cooling load calculation program (CHLC) based excel and ECO2. The results of cooling and heating load and energy demand showed the highest values in the wood frame structure, and the concrete structure were confirmed to maintain a high value secondly. Two structure were determined to be disadvantageous on the energy consumption. Consequently, the masonry structure have an advantage over the other structure under the identical conditions. It was determined that if the except for thermal bridges due to the studs in the wood frame structure, it can be reduced the energy consumption.

키워드

참고문헌

  1. Cha, J.-H., Kim, S.-H., Jeong, S.-G., Kim, S., Choi, J.-M. 2013. Consideration for Passive House Design standards. Journal of KIAEBS 7(1): 38-47.
  2. Kim, C.-S. 2015. The Influence of Unit Plan Shapes to the Energy Efficiency of Collective Housing Simulated by ECO2 Software. Journal of the Korea Institute of Ecological Architecture and Environment 15(5): 89-94.
  3. Kim, C.-S. 2016. The Evaluation of Energy Efficiency of Apartment Units after Conversion of Balconies into an Integrated Part of Interior Living Space by Computing with ECO2 Software. Journal of the Korea Institute of Ecological Architecture and Environment 16(2): 11-16.
  4. Kim, K.-A., Park, J.-S., Yu, K.-H., Moon, H.-J. 2015. Sensitivity Analysis of Building Envelope of Non-Dwelling Buildings, Journal of the Korea Solar Energy Society 35(1): 53-60. https://doi.org/10.7836/kses.2015.35.1.053
  5. Kim, S., Yu, S., Seo, J., Kim, S. 2013. Thermal Performance of Wooden Building Envelope by Thermal Conductivity of Structural Members, Journal of the Korean Wood Science and Technology 41(6): 515-527. https://doi.org/10.5658/WOOD.2013.41.6.515
  6. OECD/IEA, Paris. 2012. International Energy Agency - Energy technology perspectives 2012.
  7. Park, S.W. 2015. A Study on Changes of the Energy Efficiency Rating according to the Revised Building Energy Efficiency Rating Certification System. Master Thesis. Hanyang University, Korea.
  8. Passive House Institute. 2007. PHPP: Passive House Project Planning Package 2007, Danmstadt.
  9. Passive House Institute. 2009. Training Cource for Certified Pssive House Designer, Training Course Material. Darmstadt.
  10. Urge-Vorsatz, D., Cabeza, L.F., Serrano, S., Barreneche, C., Petrichenko, K. 2015. Heating and cooling energy trends and drivers in buildings, Renewable and Sustainable Energy Reviews 41: 85-98. https://doi.org/10.1016/j.rser.2014.08.039
  11. Yu, S-G., Kim, S., Seo, J., Kim, S. 2013. Analysis of Energy Efficiency of Light-Weigh Wood Frame House and Wooden Passive House Using PHPP, Journal of the Architectural Institute of Korea 29(8): 199-207.