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Traditionally, biologists have devoted their careers to studying 
individual biological entities of their own interest, partly due 
to lack of available data regarding that entity. Large, high- 
throughput data, too complex for conventional processing 
methods (i.e., “big data”), has accumulated in cancer biology, 
which is freely available in public data repositories. Such 
challenges urge biologists to inspect their biological entities of 
interest using novel approaches, firstly including repository 
data retrieval. Essentially, these revolutionary changes demand 
new interpretations of huge datasets at a systems-level, by so 
called “systems biology”. One of the representative applica-
tions of systems biology is to generate a biological network 
from high-throughput big data, providing a global map of 
molecular events associated with specific phenotype changes. 
In this review, we introduce the repositories of cancer big data 
and cutting-edge systems biology tools for network generation, 
and improved identification of therapeutic targets. [BMB 
Reports 2017; 50(1): 12-19]

INTRODUCTION

Traditionally, researchers have focused their efforts on single 
biological phenomena (e.g., a single gene mutation) or a 
specific signaling pathway (1). Now, the age of “omics” big 
data has brought about cutting-edge processing methods for 
interpreting biological mega data, which have now universally 
adopted. Based on such mega data (so-called “big data”), 
researchers aim to understand systems-level-based phenotype 
changes (1, 2) by assessing entire pathways/networks, and not 
just a single entity. Systems biology is defined as a framework 
(3) to enable systems-level understanding for generating new 
biological hypotheses, by computational modeling of massive 

high-throughput data. 
Currently, systems biology has broadened its applications 

from basic science (including small RNAs) (4-6) toward 
translational medicine, including biomarker and therapeutic 
target identification (1-3, 7, 8). Systems biology often begins 
from high-throughput experimental data. Due to mammoth 
data deposition, as well as data generation by various 
next-generation sequencing (NGS) techniques (9), big data 
science has emerged, in particular, from the field of cancer 
genomics (10). The most widely used repositories include The 
Cancer Genome Atlas (TCGA) Research Network (11) and the 
International Cancer Genome Consortium (ICGC) (12). The 
development of applications for big data science (10) has been 
facilitated by systems biology frameworks to allow interpreta-
tion of systems-level tumorigenesis and molecular mechanisms. 

Systems biology covers several diverse areas (13): hypothesis 
generation and network construction (or inference), and 
network simulation (e.g., ordinary differential equations, 
boolean dynamics). In this review, we restrict our discussion to 
network generation, while also describing analysis tools and 
relating databases in the field of cancer.

A WORKFLOW OF SYSTEMS BIOLOGY

Systems biology has a straightforward workflow of com-
ponents (13), as shown in Fig. 1A. To understand systems-level 
biology, observations for all entries are necessary, and high- 
throughput data is merely a starting point. Computational 
modeling takes the high-throughput data and, in certain 
circumstances, prior knowledge (including pathways and gene 
sets) is selected, resulting in network inference and hypothesis 
generation (13). Depending on whether computational modeling 
is used with or without prior knowledge, one may employ 
both data-driven network modeling and hybrid network mode-
ling, respectively (14). In both of them, computational modeling 
is a key component, due to its ability to deal with the com-
plexity of interconnectivity among systems entries (13, 14). 

HIGH-THROUGHPUT DATA AND ITS REPOSITORIES

Currently, there are numerous types of high-throughput data 
(i.e., “omics”), including genomics, epigenomics, transcriptomics, 

Invited Mini Review



Signal transduction network construction
Seungyoon Nam

13http://bmbreports.org BMB Reports

Fig. 1. Systems biology, databases, and network generation. (A) 
The diversity of types of high-throughput data (genomics, epigeno-
mics, transcriptomics, proteomics, metabolomics) available. The 
relationships among the data types are connected by edges. (B) 
The flow (represented by “edges”) of genetic information from 
DNA to protein is aligned with the diverse data types. Public 
repositories corresponding to each data type are listed (further 
description in Table 1). (C) Network differences between correlation-
based approaches and Bayesian networks approaches. The correla-
tion (or mutual information) oriented tools, ARACNE (39) and 
WGCNA (36), do not report directions of edges in networks. 
Bayesian-driven networks naturally reveal directed edges among 
the network entries. In other words, the undirected network (in 
left of the grey-shaded triangular) having G1, G2, and G3 entries 
by ARACNE and WGCNA can be differentiated into directed 
networks (in the right of the grey-shaded triangular), using Bayesian
networks tools (48-51).

metabolomics, and proteomics (15). As shown in Fig. 1B, the 
omics data types are aligned with the flow of genetic 
information in biology. Cancer genomics data in various types 
of cancers, including whole genome sequencing (WGS), 
whole exome sequencing (WES), and SNP array, has already 
been deposited in several public repositories including The 
Cancer Genome Atlas (TCGA) (11), and International Cancer 
Genome Consortium (ICGC) (12, 16) (Fig. 1B). Epigenomics in 
public databases, including the Encyclopedia of DNA Elements 
(ENCODE) (17) and the Database of Genotypes and Phenotypes 
(dbGaP) (18), possess next-generation sequencing datasets for 

genome-wide DNA methylation, histone modifications, trans-
cription factor binding, and non-coding RNAs (e.g., miRNAs, 
piRNAs). Transcriptomic datasets are deposited in the Gene 
Expression Omnibus (GEO) (19), and ArrayExpress (20), for 
more than 10 years. Proteomics and metabolomics have now 
begun accumulation in the PeptieAtlas (21) and the PRoteomics 
IDEntifications (PRIDE) (22) databases. Each repository in Fig. 
1A is not restricted to one specific data type, and users should 
be prudent to inspect all the data types of their interest through 
multiple repositories, and not a single one. The brief 
information of the repositories is described in Table 1.

PRIOR KNOWLEDGE

The two representative categories in prior knowledge are gene 
sets and pathway databases (including protein-protein inter-
actions). A gene set consists of the relevant biological 
description and its gene entries. The MIT MSigDB Collections 
(23) (software.broadinstitute.org/gsea/msigdb/collections.jsp), 
one of most comprehensive repositories of gene sets, contains 
13,311 entries. Recently, gene sets have begun including 
miRNA genes (and their expression), as well as protein-coding 
genes (24). By definition, however, gene sets do not contain 
hierarchy or mutual interaction for their gene entries (25). To 
accommodate such non-hierarchy, gene sets have been mainly 
applied to various enrichment analyses that utilize Kolmogorov– 
Smirnov test statistic, ANOVA, or hypergeometric test (further 
review in (26, 27)). A recent approach (28) identifies the con-
ditional dependency in a gene set, to reconstruct hierarchical 
relationships. Thus, numerous gene sets have now been 
recognized as prior knowledge for use in network generation.

Unlike gene sets, pathways or protein-protein interactions 
have hierarchy or mutual relationships among the entries. Of 
numerous, diverse pathway databases, we describe the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) (29), Reactome 
(30), STRING (31), and human-integrated pathway (hiPathDB) 
(32) databases. In particular, the KEGG (29) pathway database, 
one of the popular manually-curated pathway resources, 
consists of seven types of network contexts: cellular processes, 
metabolism, genetic information processing, environmental 
information processing, human diseases, organismal systems, 
and drug development (29). The KEGG pathway information is 
machine-readable via KGML (KEGG Markup Language). 
Reactome (30) is another popular peer reviewed pathway 
database, and contains ＞ 6,700 reactions (e.g., phosphorylation, 
acetylation, etc.) extracted from 15,000 publications. For 
machine readability, the SBML (Systems Biology Markup 
Language) version of Reactome data is also available (33). 

The database and web resource STRING (Search Tool for the 
Retrieval of Interacting Genes/Proteins, string-db.org) contains 
a very extensive collection of protein-protein interactions, 
based on publications and predictions. The interaction entries 
of STRING (31) amount to 932,553,897, from 2,031 organisms 
(as of 2016-04-19). While KEGG and Reactome both have 
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Names Description Address Cancer relating data

TCGA The Cancer Genome Atlas (TCGA): now one of programs organized 
by newly established NCI’s Center for Cancer Genomics (11)

cancergenome.
nih.gov

34 cancer studies (types), 
11,091 samples

dbGaP The database of Genotypes and Phenotypes (dbGaP): archive of 
genome and phenotype in human

www.ncbi.nlm.
nih.gov/gap

991 datasets

SRA Sequence Read Archive (SRA): raw sequencing files and alignment 
files from next generation sequencing

www.ncbi.nlm.
nih.gov/sra

1,950 cancer studies 

cBioPortal Multi-functional platform: supporting intuitive visualization, literate clinical 
pie chart, and simple data access (75). TCGA data visualization included.

cbioportal.org 126 cancer genomics 
studies, 26,080 samples

ICGC The International Cancer Genome Consortium (ICGC): 
global-scale cancer projects (16)

dcc.icgc.org/ 66 cancer projects, 
17,867 donors

ArrayExpress An archive of functional genomics data (76) www.ebi.ac.uk/
arrayexpress

14,974 datasets

EGA The European Genome-phenome Archive (EGA) www.ebi.ac.uk/
ega/home

1,997 datasets

UCSC CGB UCSC Cancer Genomics Browser (UCSC CGB): supplying interactive 
heat-map based visualization, and ready-to-use tab-delimited genomics 
and clinical data download (77). TCGA data visualization included.

genome-cancer.
ucsc.edu

720 datasets

GEO The Gene Expression Omnibus (GEO) (19): a public repository for 
microarray and next-generation sequencing data sets, and one 
of the representative repositories.

www.ncbi.nlm.
nih.gov/geo

19,554 datasets

ENCODE The Encyclopedia of DNA Elements (ENCODE) Consortium: decoding 
functional elements in DNA (17).

www.encodeproject.
org

Cancer cell lines 
available

CCLE The Cancer Cell Line Encyclopedia (CCLE) project: genomics and 
visualization in about 1,000 cell lines. Drug sensitivity available 
for the cell lines (78).

www.broadinstitute.
org/ccle/home

Genomic character
ization of 1,000 
cell lines

PeptideAtlas An archive of proteome information (21) www.peptideatlas.
org

99 datasets

PRIDE PRoteomics IDEntifications (PRIDE) database: protein and peptide 
identifications, post-translational modifications (22). Mass spectrometry 
based proteomics data available.

www.ebi.ac.uk/
pride/archive

290 datasets

Table 1. Cancer-related, high-throughput data repositories. The databases in Fig. 1B are described with additional information including the number 
of available data sets, data types, and websites. The number of entries is deemed valid as of 05/02/2016

directed network structures, STRING also has undirected 
network structures. The hiPathDB (32) introduces a unique 
concept of “superpathways,” that consolidates multiple resources 
of pathway databases (NCI-Nature PID (34), Reactome (30), 
BioCarta (35) and KEGG (29)), resulting in the most extensive 
hierarchical network structures.

COMPUTATIONAL MODELING AND ITS 
APPLICATION TO CANCER

Depending on prior knowledge usage, computational modeling, 
a key component in systems biology frameworks, can be 
divided into two modeling methods: hybrid method and 
data-driven method. The former incorporates prior knowledge 
in model development, while the latter infers networks or 
hypotheses directly from measurements, without prior 
knowledge. The tools described below are summarized in 
Table 2.

DATA-DRIVEN METHODS

Data-driven methods have been used to correlate mutual 
information as gene-gene connection for network construction 
(36-38), resulting in undirected networks. ARACNE (minet. 
meyerp.com) (39), another widely used free web-based tool, 
uses mutual information for constructing gene regulatory 
networks from transcriptome datasets. In principle, starting 
from all connected entries, ARACNE applies a mutual 
information data processing inequality (MIDPI) rule to the two 
adjacent edges for removing non-interacting edges (39). Since 
its introduction, ARACNE has been widely used in the field of 
cancer systems biology. Recently, ARACNE was used to 
describe three hypothetical stages of the epithelial-mesenchymal 
transition in cancer metastasis (40).

The R package, weighted gene co-expression network analysis 
(WGCNA, genetics.ucla.edu/Rpackages/WGCNA) (36), is 
another network generation tool. Specifically, WGCNA builds 
gene-gene co-expression networks from all pairwise correla-
tions, among expressed genes, across the entire transcriptome. 
To infer connections in a network, WGCNA (36) uses a 
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Class Name Homepage and description

Data-driven model ARACNE (39) ▪ http://minet.meyerp.com/▪ Standalone tool available▪ Mutual information based network generation
WGCNA (36) ▪ https://labs.genetics.ucla.edu/horvath/CoexpressionNetwork/Rpackages/WGCNA/▪ R package available▪ Correlation-based network generation
Cancer Landscapes (45) ▪ http://www.cancerlandscapes.org/▪ Web-based tool▪ Sparse inverse covariance selection-based network generation
Ultranet (46, 47) ▪ www.broadinstitute.org/ultranet▪ Standalone tool available▪ Sparse inverse covariance selection-based network generation
Banjo (48) ▪ https://users.cs.duke.edu/~amink/software/banjo/▪ Standalone tool available▪ Network generation by using Bayesian networks
CATNET (50) ▪ https://cran.r-project.org/web/packages/catnet/index.html▪ Standalone tool available▪ Bayesian networks

Hybrid model EDDY (28) ▪ http://biocomputing.tgen.org/software/EDDY▪ Standalone tool available▪ Gene sets and Bayesian networks combined
PATHOME (7) ▪ Web version of the algorithm under construction (available on request)▪ KEGG pathways and correlation-based statistic combined
SPIA (58) ▪ http://bioconductor.org/packages/release/bioc/html/SPIA.html▪ R package available▪ KEGG pathways and permutation tests combined

Table 2. Summary of tools in network construction. The short description and homepages of some tools in the manuscript are summarized

weighted adjacency matrix between gene pairs by calculating 
power adjacency function (41), resulting in connections 
among the gene entries. WGCNA has also been applied to 
diverse diseases, including cancer, for identifying therapeutic 
targets and tumorigenesis “driver” genes (42-44).

Despite the great success of correlation- and mutual 
information-based approaches, these approaches often generate 
extensive links between network entries. Consequently, 
methods have now been introduced to reduce non-significant 
links. For example, sparse inverse covariance selection (SICS) 
(45, 46) infers a gene regulatory network from various data 
types by reducing non-significant links. The main function of 
SCIS is to identify a subset of network entries that consists of 
statistically significant or optimal pairwise correlations, based 
on the entire correlation (equivalent to covariance) matrix 
between all the entries. The benefit of subset identification is 
that it can provide statistically direct relations with smaller 
number of entries. SICS methods aim at maximizing or 
optimizing log-likelihood of pairwise correlations, assuming 
pairwise correlations as Gaussian graphical models (46, 47) or 
multivariate Gaussian models (45). Cancer Landscapes 
(cancerlandscapes.org) utilizes SICS, not only to provide 
multiple cancer network modules, but also to integrate multi- 
level omics data types into statistical network modules (45).

Unlike ARACNE and WGCNA, there are several approaches 
to generate directed networks (Fig. 1C). Bayesian networks, 

another data-driven approach, utilizes a basic conditional 
independence (48-51). Bayesian networks is, by definition, 
that joint density probability of biological entries (e.g., genes) 
is the product of conditional probabilities of the entries in the 
omics data (38, 52). The definition naturally confers the ability 
to prune edges of the conditionally independent entries. Also, 
conditional dependency defines statistically casual relation-
ships among gene entries, resulting in directed networks. The 
purpose of Bayesian networks is to identify the set of 
conditional probabilities that best describe measurements 
(e.g., gene expression) of biological entries in omics databases.

Banjo (users.cs.duke.edu/software) is another gene regulatory 
network generation tool that utilizes Bayesian network 
frameworks, resulting in directed networks (48). Banjo is 
applicable not only for single-state transcriptome data, but also 
for time-series data. Banjo (Bayesian network interference with 
Java objects) uses the multiple types of heuristic network 
searching to find candidate networks (equivalently, graphs), 
such as simulated annealing with a greedy algorithm (53), and 
genetic algorithm (48). The conditional probability densities of 
each network are estimated, and the network scores (e.g., 
Bayesian Information Criterion (BIC), Bayesian Dirichlet 
equivalence (BDe)) are then calculated. Finally, Banjo reports 
the network with the best score, based on its best directed 
edges between its entries. Banjo has also been applied to 
leukemia, revealing miRNA-relating network hierarchy by 
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merging gene expression, gene regulatory networks, and copy 
number alterations (54). 

One obstacle to all these prediction methods is that there 
are no “gold standards” for data-driven network generation 
tools. Consequently, the performance of the data-driven 
methods depends on data types, model parameter settings, 
network size, and network topology (55).

HYBRID METHODS

In hybrid methods, models are generated to analyze high- 
throughput data via prior knowledge (e.g., gene sets, pathways) 
(56), resulting in network inference. Traditionally to date, 
hybrid methods use pathways as prior knowledge. Recently, 
gene sets have been recognized as another prior knowledge 
source for inferring networks that consist of entries and their 
mutual interactions. 

Another tool, EDDY (evaluation of dependency differen-
tiality) (28) considers two conditions, and applies Bayesian 
networks framework to all the gene sets. EDDY selects the best 
network structure for each gene set, by using Jensen-Shannon 
(JS) divergences and permutation tests from all possible 
network structures. The tool then calculates the two pro-
bability density distributions of a network structure for the two 
conditions. Subsequently, EDDY calculates JS divergence for 
the two distributions of the network structure, measuring JS 
divergence as the difference of the two distributions. The 
significance of JS divergence is measured by the permutation 
test, identifying the best network structure having statistically 
significant JS divergence. The output is a network that consists 
of the entries (of the gene set) and their interactions between 
the entries. The tool was recently applied to glioblastoma 
multiforme (GBM), resulting in the successful identification of 
specific molecular subtypes of glioblastoma (28).

Prior pathway information with omics data has been 
incorporated into statistical frameworks for the past ten years 
(7, 8, 57), successfully generating network structures. In this 
approach, the challenge to build the statistical framework is 
developing and defining a statistic reflecting pathway topology. 
Pathway topology indicates interaction types (e.g., activation, 
inhibition, modification) as well as order (e.g., upstream, 
downstream) of biological entries. Another tool, SPIA (signaling 
pathway impact analysis) (58) (bioconductor.org/packages/ 
release/bioc/html/SPIA.html), utilizes the KEGG pathway 
database as prior knowledge. Instead of utilizing the individual 
signaling molecules (in KEGG pathways), SPIA aligns the 
consecutive KEGG signaling “flows” with omics data. 
Additionally, SPIA now considers two types of a flow between 
two adjacent signaling molecules: activation and inhibition. 
SPIA quantitatively measures influence (i.e., perturbation 
statistic in a given pathway) on signal cascading flows by using 
omics data between two experimental groups. For any given 
pathway, SPIA obtains P values for the perturbation statistic by 
using permutation tests. SPIA also reconstructs statistically 

significant pathways in a network. Recently, SPIA was applied 
to aggressive prostate cancer, discovering that the disease 
shares a pathway network with small cell lung cancer (59).

We also developed pathway topology-driven hybrid methods 
(7, 8), specifically for network generation, including PATHOME 
(7). These two methods also input the KEGG database (29) as 
prior knowledge for network generation. The earlier algorithm 
(8) (henceforth, pre-PATHOME) identified subsets of all KEGG 
pathways by utilizing permutation-oriented statistical tests, 
based on a whole transcriptome. Since graphical structures of 
the KEGG pathways are too complex, we decomposed to all 
the possible paths (∼130 million, equivalently, subpathways) 
by traversing the graph structures. 

In pre-PATHOME, each path consists of biological entries 
and their mutual interactions between adjacent two entries, 
either activation or inhibition. Given a subpathway, we 
devised a statistic to consider interactions (equivalently, edges) 
of two adjacent entries, as well as orders of biological entities 
(8). We assumed the first order Markov property (denoted as 
Fedge in (8)) where the fold-changes of the entities were regarded 
as observations. Subsequently, we performed permutation- 
based statistical tests for the product of Fedge and two additional 
statistics in each path. The statistically significant paths were 
collected and visualized. The pre-PATHOME was applied to 
an early onset colorectal cancer (CRC) dataset (60), revealing 
the pathways of epithelial-to-mesenchymal transition and 
immunosuppression even in normal adjacent cells of the CRC 
patients (8). The pre-PATHOME (8) was also deployed to 
identify trastuzumab-resistance pathways relating to networks 
in HER2(＋) breast cancer (61), revealing five biomarker 
candidates associated with trastuzumab non-responsiveness 
(ATF4, CHEK2, ENAH, ICOSLG, and RAD51).

Our group recently developed another hybrid method, 
PATHOME, (7). The pre-PATHOME (8) assumed that all 
interactions in a subpathway are dependent on their upstream 
entities (the so called, first order Markov property). PATHOME 
assumes that all edges in a subpathway are independent, 
adopting a two-stage strategy in our statistical framework (7). 
In the first stage, out of 130 million KEGG subpathways, 
PATHOME selects those with their edges aligned with 
correlations. In the second stage, we test the selected sub-
pathways under the null hypothesis, that no differential 
correlation patterns between two groups are observed. Despite 
the independence assumption among edges, PATHOME 
showed better agreement with a cancer signaling reference set 
(62), when compared to other gene set analysis tools (e.g., 
DAVID (63), and GSEA (25)). 

PATHOME has also been applied for delineating druggable 
target candidates, as well as molecular mechanisms, in both 
gastric and breast cancers (7, 64, 65). Recently, PATHOME 
was applied to gastric cancer (GC) transcriptome datasets, 
suggesting a HNF4/WNT5A axis to be a new druggable 
signaling, as well as having a clinical relevance in diffuse type 
GC (64, 65). Since trastuzumab treatment of HER2-positive GC 
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tumors show limited benefit, compared with ERBB2-positive 
breast cancer (66), PATHOME was applied to high ERBB2 
(equivalently, HER2)- expressing GC patient datasets in the 
TCGA (64, 67). In these analyses, PATHOME revealed that 
NFBIE, PTK2, and PIK3CA, all downstream molecules of 
ERBB2, associate with genomic characteristics of high ERBB2- 
expressing GC patients over low ERBB2-expressing GC 
patients (64).

CONCLUSIONS

Systems biology is a general modeling framework that utilizes 
high-throughput data and prior knowledge, to result in 
network inference and hypotheses suggestions. Most network 
generation tools are based on whole transcriptome data. Using 
statistical models, the integration of other data types into 
network topology is still challenging. For example, for effective 
targeted therapy, the effects of mutations need to be incor-
porated into pathway topology under the systems biology 
frameworks (68). Also, for facilitation of translating cancer big 
data toward therapeutic benefit, pharmacokinetics/pharma-
codynamics assessments (69-71) need to be considered in 
network generation in future. 

Although this review does not describe visualization tools, 
intuitive and informative graphical visualization of the models 
should keep pace with systems biology tools (72-74).
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