DOI QR코드

DOI QR Code

Heat Exchange Element Made of Plastic for Cooling of Telecommunication Cabinet

통신 함체 냉각용 플라스틱 재질의 열교환 소자

  • Kim, Nae-Hyun (Department of Mechanical Engineering, Incheon National University)
  • 김내현 (인천대학교 기계시스템공학부)
  • Received : 2016.09.07
  • Accepted : 2017.01.06
  • Published : 2017.01.31

Abstract

The heat generation rate in a telecommunications cabinet keeps increasing due to the increased usage of mobile devices. Insufficient removal of the heat increases the cabinet temperature, which results in the malfunction of the electronic devices. In this study, tests were conducted on aluminum and plastic heat exchangers for cooling a telecommunications cabinet, and the results were compared with theoretical predictions. The aluminum heat exchanger comprised counter flow parallel channels with 4.5-mm pitch, and the plastic heat exchangers comprised cross or cross-counter flow triangular channels with 2.0-mm pitch. The volume of the cross flow heat exchanger was the same as that of the aluminum heat exchanger, and the volume of the cross-counter heat exchanger was 33% larger than that of the aluminum heat exchanger. The results show that the heat transfer rate is the highest for the cross-counter heat exchanger and lowest for the aluminum one. The temperature efficiency of the cross-counter heat exchanger was 56% higher than that of the aluminum one and 20% higher than that of the cross flow heat exchanger. The pressure drop of the cross-counter heat exchanger was approximately the same as that of the aluminum one. The heat exchange efficiency was the highest for the cross-counter heat exchanger and lowest for the cross flow heat exchanger. The theoretical analysis somewhat overestimated or underestimated the data.

함체 내의 발열은 이동통신기기의 회선 처리 능력이 증가함에 따라 계속 증가하고 있다. 이 열을 적절히 외부로 방출해 주지 않으면 중계기 내의 온도가 상승하여 전자장치 오작동의 원인이 된다. 본 연구에서는 통신 함체 냉각 모듈용 알루미늄 및 플라스틱 소자의 성능에 대해 실험을 수행하고 이론 해석 결과와도 비교하였다. 알루미늄 소자는 핏치 4.5 mm의 대향류 평행 채널로 구성되고 플라스틱 소자는 핏치 2.0 mm의 직교류 및 직교 대향류 삼각 채널로 구성되었다. 한편 직교류 소자의 크기는 알루미늄 소자와 동일하고 직교대향류 소자는 알루미늄 소자보다 33% 크다. 실험 결과 플라스틱 직교 대향류 소자의 전열량이 가장 크고 알루미늄 대향류 소자의 전열량이 가장 작게 나타났다. 또한 알루미늄 대향류 소자를 base 소자로 할 때 플라스틱 직교대향류 소자의 온도교환효율은 base 소자보다 평균 56% 크고 플라스틱 직교류 소자의 값보다는 평균 29% 크게 나타났다. 한편 플라스틱 직교대향류 소자와 base 소자의 압력손실은 유사하게 나타났다. 열교환 효율은 플라스틱 직교대향류 소자에서 가장 크고 플라스틱 직교류 소자에서 가장 작게 나타났다. 또한 이론 모델은 소자의 성능을 다소 과대 또는 과소 예측하였다.

Keywords

References

  1. Schmidt, R. R. and Shaukatullah, "Computer and telecommunications equipment room cooling : a review of literature," IEEE Transactions on components and packaging technologies, vol. 26, no. 1, pp. 89-98, 2003. DOI: http://dx.doi.org/10.1109/TCAPT.2003.811482
  2. Kang, I.-S., Choi, D.-K. and Kim, T.-Y., "The experimental study on the performance of two-phase loop thermosyphon system for electronic equipment cooling," Trans. B, KSME, vol. 28, no. 4, pp. 415-424, 2004. https://doi.org/10.3795/KSME-B.2004.28.4.415
  3. Jeon, J., Kim, Y., Choi, J.-M., Hyun, D.-S. and Yun, L., "Performance characteristics of liquid cooling heat exchangers with MPCM slurry designed for telecommunication equipment," Korean J. Air-Conditioning Refrigeration Engineering, vol. 19, no. 10, pp. 710-717, 2007.
  4. Kim, Y., Choi, J. M., Kang, H., Yoon, J., Kim, Y., Lee, H. and Choi, K., "Performance characteristics of a hybrid air-conditioner for telecommunication equipment rooms," Korean J. Air-Conditioning Refrigeration Engineering, vol. 18, no. 11, pp. 874-880, 2006.
  5. http://www.rittal.com
  6. CleanAirNanoTech, "600W telecommunication cabinet cooling module equipped with sensible heat exchanger," Annual Report to KETEP, 2016.
  7. ASHRAE Standard 41.2, Standard method for laboratory air-flow measurement, ASHRAE, 1986.
  8. Kim, N.-H., "Performance comparison between indirect evaporative coolers made of aluminum, plastic or plastic/paper," J. Korea Academia-Industrial Cooperation Society, vol. 16, no. 12, pp. 8165-8175, 2015. DOI: http://dx.doi.org/10.5762/KAIS.2015.16.12.8165
  9. ASHRAE Standard 41.1, Standard method for temperature measurement, ASHRAE, 1986.
  10. KS C 9306, Air Conditioner, 2002
  11. ANSI/ASHRAE Standard 37, Standard measurement guide, engineering analysis of experimental data, ASHRAE, 2005.
  12. Kays, W. M. and London, A. L., Compact Heat Exchangers, McGraw-Hill Pub., 1984.
  13. Kakac, S., Boilers, Evaporators and Condensers, John Wiley and Sons Inc., 1991.
  14. Johnson, J. E., Heat and mass transfer between two fluid streams separated by a thin, permeable barrier, Ph.D. Thesis, University of Minnesota, Department of Mechanical Engineering, 1997.
  15. Mills, A. F., Basic Heat and Mass Transfer, Irwin Pub., 1995.