DOI QR코드

DOI QR Code

Characteristic Analysis of Permanent Magnet Linear Generator by using Space Harmonic Method

공간고조파법을 이용한 영구자석 선형 발전기의 특성 해석

  • 서성원 (충남대학교 전기공학과) ;
  • 최장영 (충남대학교 전기공학과) ;
  • 김일중 (호서대학교 기계공학전공)
  • Received : 2016.09.29
  • Accepted : 2017.01.06
  • Published : 2017.01.31

Abstract

This paper deals with characteristics analysis of a permanent magnet (PM) linear generator using analytical methods for wave energy harvesting. The wave energy is carried out from the movement of a yo-yo system. A linear generator using permanent magnets to generate a magnetic force itself does not require a separate power supply and has the advantage of simple maintenance. In addition to the use of a rare earth, a permanent magnet having a high-energy density can be miniaturized and lightweight, and can obtain high energy-conversion efficiency. We derived magnetic field solutions produced by the permanent magnet and armature reaction based on 2D polar coordinates and magnetic vector potential. Induced voltage is obtained via arbitrary sinusoidal input. In addition, electrical parameters are obtained, such as back-EMF constant, resistance, and self- and mutual-winding inductances. The space harmonic method used in this paper is confirmed by comparing it with finite element method (FEM) results. These facilitate the characterization of the PM-type linear generator and provide a basis for comparative studies, design optimization, and machine dynamic modeling.

본 논문은 파력 에너지 수집 장치에 사용할 수 있는 영구자석 선형 동기발전기의 특성 해석에 관한 것이다. 파력 에너지는 요요시스템과 같은 기구로 부터 얻어진다. 영구자석을 이용한 선형 발전기는 영구자석의 자력을 통해 별도의 전원공급이 필요 없고 유지 보수가 간단한 장점을 가지고 있다. 또한 높은 에너지 밀도를 갖는 희토류의 사용으로 영구자석 기기는 소형화 및 경량화가 가능하며 보다 높은 에너지 변환 효율을 얻을 수 있다. 영구자석 선형 동기발전기 특성 해석을 위해 2차원 극 좌표계 및 자기 벡터 포텐셜에 근거하여 영구자석과 전기자 반작용 자계해석을 수행 하였다. 해석 해를 이용하여 정현적인 속도입력에 의해 유도되는 유기기전력의 특성 식을 유도하고, 동일한 방법으로 역기전력 상수, 저항, 자기인덕턴스와 상호인덕턴스와 같은 전기적 파라미터를 얻었다. 본 논문에서 사용한 공간고조파법의 결과는 2차원 유한요소해석법 결과와 비교하여 잘 일치하는 것을 확인하였다. 이 결과는 영구자석 형 선형 발전기의 특성을 이해하는 것과 해석방법의 비교연구, 설계 최적화, 그리고 기기의 동적 모델링에 기여할 수 있다.

Keywords

References

  1. H. J. Shin, J. Y. Choi, I. J. Kim, and Y. S. Choi, "Electromagnetic Analysis and Experimental Testing of a Light Switch with a Permanent Magnet Generator for Energy Harvesting based on Three Dimensional Finite Element Model," Journal of Applied Physics, vol. 115, 17E703, Jan. 2014. DOI: http://doi.org/10.1063/1.4857915
  2. K. H. Sim, J. S. Park, and S. J. Jang, "Electro-Mechanical Modeling and Performance Analysis of Floating Wave Energy Converters Utilizing Yo-Yo Vibrating System." Trans. of the Korean Soc. of Mech. Eng. A, vol. 39, pp. 79-87, 2015. DOI: http://doi.org/10.3795/KSME-A.2015.39.1.079
  3. H. Polinder, F. F. A. van der Pijl, G. J. de Vilder, and P. J. Tavner, "Comparison of direct-drive and geared generator concepts for wind turbines," IEEE Transactions on Energy Conversion, vol. 21, pp. 725-733, Sep. 2006. DOI: https://doi.org/10.1109/TEC.2006.875476
  4. Y. Amara, J. B. Wang, and D. Howe, "Analytical prediction of eddy-current loss in modular tubular permanent-magnet machines," IEEE Trans. on Energy Conv., vol. 20, pp. 761-770, Dec. 2005. DOI: https://doi.org/10.1109/TEC.2005.853732
  5. J. B. Wang, G. W. Jewell, and D. Howe, "A general framework for the analysis and design of tubular linear permanent magnet machines," IEEE Transactions on Magnetics, vol. 35, pp. 1986 - 2000, May 1999. DOI: https://doi.org/10.1109/20.764898
  6. Zhu Z.Q., Howe D., Bolte E., and Ackermann B., "Instantaneous magnetic field distribution in brushless permanent magnet DC motors. I. Open-circuit field," IEEE Trans. on Magnetics, vol. 29, pp. 124-135, Jan. 1993. DOI: https://doi.org/10.1109/20.195559
  7. Z.Q.Zhu, D.Howe, "Insantaneous magnetic field distribution in brushless permanent magnet dc motors, Part II:Armature -reaction field," IEEE Trans. on Magnetics, vol. 29, pp. 136-142, Jan. 1993. DOI: https://doi.org/10.1109/20.195559
  8. Z. Q. Zhu, D. Howe, E. Bolte, B. Ackermann, "Insantaneous magnetic field distribution in brushless permanent magnet dc motors, Part III:Effect of stator slotting," IEEE Trans. on Magnetics, vol. 29, 143-151, Jan. 1993. DOI: https://doi.org/10.1109/20.195559
  9. Z.Q.Zhu, D.Howe, E. Bolte, B. Ackermann, "Insantaneous magnetic field distribution in brushless permanent magnet dc motors, Part IV:Magnetic field on load," IEEE Trans. on Magnetics, vol. 29, pp. 152-158, Jan. 1993. DOI: https://doi.org/10.1109/20.195559
  10. J. R. Melcher, "Continuum Electromechanics," Cambridge, MA: MIT Press, 1981.
  11. D. L. Trumper, W. J. Kim, and M. E. Williams, "Design and analysts framework for linear permanent-magnet machines," IEEE Transactions on Industry Applications, vol. 32, pp. 371-379, Mar-Apr 1996. DOI: https://doi.org/10.1109/28.491486
  12. Kent R. Davey, "Analytic analysis of single -and three phase induction motors," IEEE Transactions, Mag. vol. 34, Sep. 1998. DOI: https://doi.org/10.1109/20.718534
  13. J. Y. Choi, S. H. Lee, K. J. Ko, and S. M. Jang, "Improved Analytical Model for Electromagnetic Analysis of Axial Flux Machines With Double-Sided Permanent Magnet Rotor and Coreless Stator Windings," IEEE Transactions on Magnetics, vol. 47, no. 10, pp. 2760 - 2763, Oct. 2011. DOI: https://doi.org/10.1109/TMAG.2011.2151840
  14. J. Y. Choi, H. J. Shin, S. M. Jang, and S. H. Lee, "Torque Analysis and Measurements of Cylindrical Air-Gap Synchronous Permanent Magnet Couplings Based on Analytical Magnetic Field Calculations," IEEE Transactions on Magnetics, vol. 49, no. 7, pp. 3921-3924, Jul. 2013. DOI: https://doi.org/10.1109/TMAG.2013.2239265