DOI QR코드

DOI QR Code

관성 센서 데이터를 활용한 3 DoF 이미지 스티칭 향상

Enhancement on 3 DoF Image Stitching Using Inertia Sensor Data

  • 김민우 (명지대학교 컴퓨터공학과) ;
  • 김상균 (명지대학교 컴퓨터공학과)
  • Kim, Minwoo (Myongji University Computer Engineering Department) ;
  • Kim, Sang-Kyun (Myongji University Computer Engineering Department)
  • 투고 : 2016.08.31
  • 심사 : 2016.11.15
  • 발행 : 2017.01.30

초록

본 논문은 수평을 유지하여 촬영해야 한다는 기존 이미지 스티칭을 이용한 영상 정합 과정의 단점을 극복하기 위하여, 스마트폰의 가속도 센서와 자기장 센서 데이터를 사용하여 3가지 자유도(3 DoF)에 강인한 이미지 스티칭 방법을 제안한다. 이미지를 붙이는 작업인 이미지 스티칭은 크게 이미지 특징점 추출, 추출된 특징점에서 매칭에 필요한 참인 점(inlier)을 선별, 참인 점을 호모그래피(homography) 행렬로 변환, 호모그래피 행렬을 사용하여 이미지를 왜곡(warping), 왜곡된 이미지와 다른 이미지를 합하는 과정으로 이루어져 있다. 본 논문에서는 일반적으로 사용하는 SIFT, SURF 등의 알고리즘뿐만 아니라 MPEG에서 표준화한 MPEG-7 CDVS(Compact Descriptor for Visual Search) 표준의 특징점 추출 알고리즘을 사용하여 이미지의 특징점을 추출한다. 또한 각 알고리즘의 특징점 추출시간, 추출된 특징점 개수, 선별된 참인 점의 개수를 비교하고, 스티칭 정확도를 판단하여 본 연구에서 활용한 데이터에 어느 알고리즘이 효율적인지 살펴본다.

This paper proposes a method to generate panoramic images by combining conventional feature extraction algorithms (e.g., SIFT, SURF, MPEG-7 CDVS) with sensed data from an inertia sensor to enhance the stitching results. The challenge of image stitching increases when the images are taken from two different mobile phones with no posture calibration. Using inertia sensor data obtained by the mobile phone, images with different yaw angles, pitch angles, roll angles are preprocessed and adjusted before performing stitching process. Performance of stitching (e.g., feature extraction time, inlier point numbers, stitching accuracy) between conventional feature extraction algorithms is reported along with the stitching performance with/without using the inertia sensor data.

키워드

참고문헌

  1. Panorama VR, from http://www.uok3d.com/bussiness/panorama.php
  2. K. M. Park, W. H. Seok, and K. H. Lee, "Sensor Industry and Major Promising Sensor Market and Technology Trend," Electronics and Telecommunications Research Institute, 2015, 02.
  3. S. H. Lee, "State and the Issues of IOT," Institute for Information & communications Technology Promotion, 2014, 04.
  4. Park, Siyoung; Kim, Jongho; Yoo, Jisang, "Fast Stitching Algorithm by using Feature Tracking," Journal of Broadcast Engineering, Vol. 20, no 5 pp. 728-737, 2015. https://doi.org/10.5909/JBE.2015.20.5.728
  5. Ahn, Yang-Keun, Hong, Ji-Man, "Nonlinear Optimization Method for Multiple Image Registration," Journal of Broadcast Engineering, Vol. 17, no. 4, pp. 634-639, 2012. https://doi.org/10.5909/JBE.2012.17.4.634
  6. Kwon, Oh Seol, "Image Matching Based on Robust Feature Extraction for Remote Sensing Haze Images," Journal of Broadcast Engineering, Vol. 21, no. 2, pp. 272-275, 2016. https://doi.org/10.5909/JBE.2016.21.2.272
  7. D. G. Lowe, "Distinctive Image Features from Scale-invariant Keypoints," International Journal of Computer Vision, 60, 2, 91-110, 05, 2004. https://doi.org/10.1023/B:VISI.0000029664.99615.94
  8. H. Bay, A. Ess, T. Tuytelaars, and L. V. Gool, "Speeded-Up Robust Features (SURF)," Similarity Matching in Computer Vision and Multimedia, 110, 3, 346-359, 06, 2008.
  9. H. Bay, T. Tuytelaars, and L. V. Gool, "SURF: Speeded Up Robust Features," 9th European Conference on Computer Vision, 404-417, 05, 2006.
  10. P. M. Panchal, S. R. Panchal, and S. K. Shah, "A Comparison of SIFT and SURF," International Journal of Innovative Research in Computer and Communication Engineering, 1, 2, 323-327, 04, 2013.
  11. L. Juan and O. Gwun, "A Comparison of SIFT, PCA-SIFT and SURF," International Journal of Image Processing (IJIP), 3, 4, 143-152, 2009.
  12. CDVS1, "Call for Proposals for Compact Descriptors for Visual Search," N12201, Turin, Italy, ISO/IEC JTC1/SC29/WG11, 2011.
  13. Ling-Yu Duan, Feng Gao, Jie Chen, Jie Lin, and Tiejun Huang, "Compact Descriptors for Mobile Visual Search and MPEG CDVS Standardization," IEEE International Symposium on Circuits and Systems, 885-888, 05, 2013.
  14. H. K. Kim, "MPEG-7 CDVS Standardization Media Searching under Mobile Environment," Telecommunications Technology Association, 144, 35-38, 2012.
  15. M. A. Fischler and R. C. Bolles, "Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography," Communications of the ACM, 24, 6, 381-395, 06, 1981. https://doi.org/10.1145/358669.358692
  16. E. Dubrofsky, "Homography Estimation," University of British Columbia, 2009.
  17. Y. H. Park and O. S. Kwon, "Multiple Homographies Estimation using a Guided Sequential RANSAC," The Korea Contents Association, 10, 7, 10-22, 2010, 07.
  18. R. Szeliski, "Image Alignment and Stitching: A Tutorial," Foundations and Trends(R) in Computer Graphics and Vision, 2, 1, 1-104, 2006. https://doi.org/10.1561/0600000009
  19. M. Brown and D. G. Lowe, "Automatic Panoramic Image Stitching using Invariant Features," International Journal of Computer Vision, 74, 1, 59-73, 2007, 12. https://doi.org/10.1007/s11263-006-0002-3
  20. J. Heikkila and O. Silven, "A Four-step Camera Calibration Procedure with Implicit Image Correction," IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1106-1112, 06, 1997