References
- Arvanitakis, L., Geras-Raaka, E., Varma, A., Gershengorn, M. C. and Cesarman, E. (1997) Human herpesvirus KSHV encodes a constitutively active G-protein-coupled receptor linked to cell proliferation. Nature 385, 347-350. https://doi.org/10.1038/385347a0
- Balkwill, F. (2004) The significance of cancer cell expression of the chemokine receptor CXCR4. Semin. Cancer Biol. 14, 171-179. https://doi.org/10.1016/j.semcancer.2003.10.003
- Bhattacharjee, B., Renzette, N. and Kowalik, T. F. (2012) Genetic analysis of cytomegalovirus in malignant gliomas. J. Virol. 86, 6815-6824. https://doi.org/10.1128/JVI.00015-12
- Billstrom, M. A., Johnson, G. L., Avdi, N. J. and Worthen, G. S. (1998) Intracellular signaling by the chemokine receptor US28 during human cytomegalovirus infection. J. Virol. 72, 5535-5544.
- Billstrom, M. A., Lehman, L. A. and Scott Worthen, G. (1999) Depletion of extracellular RANTES during human cytomegalovirus infection of endothelial cells. Am. J. Respir. Cell Mol. Biol. 21, 163-167. https://doi.org/10.1165/ajrcmb.21.2.3673
- Bodaghi, B., Jones, T. R., Zipeto, D., Vita, C., Sun, L., Laurent, L., Arenzana-Seisdedos, F., Virelizier, J. L. and Michelson, S. (1998) Chemokine sequestration by viral chemoreceptors as a novel viral escape strategy: withdrawal of chemokines from the environment of cytomegalovirus-infected cells. J. Exp. Med. 188, 855-866. https://doi.org/10.1084/jem.188.5.855
- Bongers, G., Maussang, D., Muniz, L. R., Noriega, V. M., Fraile-Ramos, A., Barker, N., Marchesi, F., Thirunarayanan, N., Vischer, H. F., Qin, L., Mayer, L., Harpaz, N., Leurs, R., Furtado, G. C., Clevers, H., Tortorella, D., Smit, M. J. and Lira, S. A. (2010) The cytomegalovirus-encoded chemokine receptor US28 promotes intestinal neoplasia in transgenic mice. J. Clin. Invest. 120, 3969-3978. https://doi.org/10.1172/JCI42563
- Boomker, J. M., van Luyn, M. J., The, T. H., de Leij, L. F. and Harmsen, M. C. (2005) US28 actions in HCMV infection: lessons from a versatile hijacker. Rev. Med. Virol. 15, 269-282. https://doi.org/10.1002/rmv.468
- Burg, J. S., Ingram, J. R., Venkatakrishnan, A. J., Jude, K. M., Dukkipati, A., Feinberg, E. N., Angelini, A., Waghray, D., Dror, R. O., Ploegh, H. L. and Garcia, K. C. (2015) Structural biology. Structural basis for chemokine recognition and activation of a viral G proteincoupled receptor. Science 347, 1113-1117. https://doi.org/10.1126/science.aaa5026
- Cabrera-Vera, T. M., Vanhauwe, J., Thomas, T. O., Medkova, M., Preininger, A., Mazzoni, M. R. and Hamm, H. E. (2003) Insights into G protein structure, function, and regulation. Endocr. Rev. 24, 765-781. https://doi.org/10.1210/er.2000-0026
- Casarosa, P., Bakker, R. A., Verzijl, D., Navis, M., Timmerman, H., Leurs, R. and Smit, M. J. (2001) Constitutive signaling of the human cytomegalovirus-encoded chemokine receptor US28. J. Biol. Chem. 276, 1133-1137. https://doi.org/10.1074/jbc.M008965200
- Casarosa, P., Menge, W. M., Minisini, R., Otto, C., van Heteren, J., Jongejan, A., Timmerman, H., Moepps, B., Kirchhoff, F., Mertens, T., Smit, M. J. and Leurs, R. (2003a) Identification of the first nonpeptidergic inverse agonist for a constitutively active viral-encoded G protein-coupled receptor. J. Biol. Chem. 278, 5172-5178. https://doi.org/10.1074/jbc.M210033200
- Casarosa, P., Menge, W. M., Minisini, R., Otto, C., van Heteren, J., Jongejan, A., Timmerman, H., Moepps, B., Kirchhoff, F., Mertens, T., Smit, M. J. and Leurs, R. (2003b) Identification of the first nonpeptidergic inverse agonist for a constitutively active viral-encoded G protein-coupled receptor. J. Biol. Chem. 278, 5172-5178. https://doi.org/10.1074/jbc.M210033200
- Casarosa, P., Waldhoer, M., LiWang, P. J., Vischer, H. F., Kledal, T., Timmerman, H., Schwartz, T. W., Smit, M. J. and Leurs, R. (2005) CC and CX3C chemokines differentially interact with the N terminus of the human cytomegalovirus-encoded US28 receptor. J. Biol. Chem. 280, 3275-3285. https://doi.org/10.1074/jbc.M407536200
- Chee, M. S., Bankier, A. T., Beck, S., Bohni, R., Brown, C. M., Cerny, R., Horsnell, T., Hutchison, C. A., 3rd, Kouzarides, T., Martignetti, J. A., Preddie, E. P., Satchwell, S. C., Tomlinson, P., Weston, K. M. and Barrell, B. G. (1990) Analysis of the protein-coding content of the sequence of human cytomegalovirus strain AD169. Curr. Top. Microbiol. Immunol. 154, 125-169.
- Fraile-Ramos, A., Kledal, T. N., Pelchen-Matthews, A., Bowers, K., Schwartz, T. W. and Marsh, M. (2001) The human cytomegalovirus US28 protein is located in endocytic vesicles and undergoes constitutive endocytosis and recycling. Mol. Biol. Cell 12, 1737-1749. https://doi.org/10.1091/mbc.12.6.1737
- Frostegard, J. (2013) Immunity, atherosclerosis and cardiovascular disease. BMC Med. 11, 117. https://doi.org/10.1186/1741-7015-11-117
-
Gao, J. L. and Murphy, P. M. (1994) Human cytomegalovirus open reading frame US28 encodes a functional
${\beta}$ chemokine receptor. J. Biol. Chem. 269, 28539-28542. - Hulshof, J. W., Casarosa, P., Menge, W. M., Kuusisto, L. M., van der Goot, H., Smit, M. J., de Esch, I. J. and Leurs, R. (2005) Synthesis and structure-activity relationship of the first nonpeptidergic inverse agonists for the human cytomegalovirus encoded chemokine receptor US28. J. Med. Chem. 48, 6461-6471. https://doi.org/10.1021/jm050418d
- Hulshof, J. W., Vischer, H. F., Verheij, M. H., Fratantoni, S. A., Smit, M. J., de Esch, I. J. and Leurs, R. (2006) Synthesis and pharmacological characterization of novel inverse agonists acting on the viral-encoded chemokine receptor US28. Bioorg. Med. Chem. 14, 7213-7230. https://doi.org/10.1016/j.bmc.2006.06.054
- Kenneson, A. and Cannon, M. J. (2007) Review and meta-analysis of the epidemiology of congenital cytomegalovirus (CMV) infection. Rev. Med. Virol. 17, 253-276. https://doi.org/10.1002/rmv.535
- Kolar, G. R., Grote, S. M. and Yosten, G. L. (2016) Targeting orphan G protein-coupled receptors for the treatment of diabetes and its complications: C-peptide and GPR146. J. Intern. Med. [Epub ahead of print].
- Kralj, A., Kurt, E., Tschammer, N. and Heinrich, M. R. (2014) Synthesis and biological evaluation of biphenyl amides that modulate the US28 receptor. ChemMedChem 9, 151-168. https://doi.org/10.1002/cmdc.201300369
- Kralj, A., Nguyen, M. T., Tschammer, N., Ocampo, N., Gesiotto, Q., Heinrich, M. R. and Phanstiel, O., 4th. (2013) Development of flavonoid-based inverse agonists of the key signaling receptor US28 of human cytomegalovirus. J. Med. Chem. 56, 5019-5032. https://doi.org/10.1021/jm4003457
- Kralj, A., Wetzel, A., Mahmoudian, S., Stamminger, T., Tschammer, N. and Heinrich, M. R. (2011) Identification of novel allosteric modulators for the G-protein coupled US28 receptor of human cytomegalovirus. Bioorg. Med. Chem. Lett. 21, 5446-5450. https://doi.org/10.1016/j.bmcl.2011.06.120
- Krupnick, J. G. and Benovic, J. L. (1998) The role of receptor kinases and arrestins in G protein-coupled receptor regulation. Annu. Rev. Pharmacol. Toxicol. 38, 289-319. https://doi.org/10.1146/annurev.pharmtox.38.1.289
- Kuhn, D. E., Beall, C. J. and Kolattukudy, P. E. (1995) The cytomegalovirus US28 protein binds multiple CC chemokines with high affinity. Biochem. Biophys. Res. Commun. 211, 325-330. https://doi.org/10.1006/bbrc.1995.1814
- Lefkowitz, R. J. (2007) Seven transmembrane receptors: something old, something new. Acta Physiol. (Oxf.) 190, 9-19. https://doi.org/10.1111/j.1365-201X.2007.01693.x
- Margulies, B. J., Browne, H. and Gibson, W. (1996) Identification of the human cytomegalovirus G protein-coupled receptor homologue encoded by UL33 in infected cells and enveloped virus particles. Virology 225, 111-125. https://doi.org/10.1006/viro.1996.0579
- Maussang, D., Langemeijer, E., Fitzsimons, C. P., Stigter-van Walsum, M., Dijkman, R., Borg, M. K., Slinger, E., Schreiber, A., Michel, D., Tensen, C. P., van Dongen, G. A., Leurs, R. and Smit, M. J. (2009a) The human cytomegalovirus-encoded chemokine receptor US28 promotes angiogenesis and tumor formation via cyclooxygenase-2. Cancer Res. 69, 2861-2869. https://doi.org/10.1158/0008-5472.CAN-08-2487
- Maussang, D., Verzijl, D., van Walsum, M., Leurs, R., Holl, J., Pleskoff, O., Michel, D., van Dongen, G. A. and Smit, M. J. (2006) Human cytomegalovirus-encoded chemokine receptor US28 promotes tumorigenesis. Proc. Natl. Acad. Sci. U.S.A. 103, 13068-13073. https://doi.org/10.1073/pnas.0604433103
- Maussang, D., Vischer, H. F., Schreiber, A., Michel, D. and Smit, M. J. (2009b) Pharmacological and biochemical characterization of human cytomegalovirus-encoded G protein-coupled receptors. Methods Enzymol. 460, 151-171.
-
Melnychuk, R. M., Streblow, D. N., Smith, P. P., Hirsch, A. J., Pancheva, D. and Nelson, J. A. (2004) Human cytomegalovirus-encoded G protein-coupled receptor US28 mediates smooth muscle cell migration through
$G{\alpha}12$ . J. Virol. 78, 8382-8391. https://doi.org/10.1128/JVI.78.15.8382-8391.2004 -
Miller, W. E., Houtz, D. A., Nelson, C. D., Kolattukudy, P. E. and Lefkowitz, R. J. (2003) G-protein-coupled receptor (GPCR) kinase phosphorylation and
${\beta}$ -arrestin recruitment regulate the constitutive signaling activity of the human cytomegalovirus US28 GPCR. J. Biol. Chem. 278, 21663-21671. https://doi.org/10.1074/jbc.M303219200 - Mokros, T., Rehm, A., Droese, J., Oppermann, M., Lipp, M. and Hopken, U. E. (2002) Surface expression and endocytosis of the human cytomegalovirus-encoded chemokine receptor US28 is regulated by agonist-independent phosphorylation. J. Biol. Chem. 277, 45122-45128. https://doi.org/10.1074/jbc.M208214200
- Molleskov-Jensen, A. S., Oliveira, M. T., Farrell, H. E. and Davis-Poynter, N. (2015) Virus-encoded 7 transmembrane receptors. Prog. Mol. Biol. Transl. Sci. 129, 353-393.
- Montaner, S., Kufareva, I., Abagyan, R. and Gutkind, J. S. (2013) Molecular mechanisms deployed by virally encoded G protein-coupled receptors in human diseases. Annu. Rev. Pharmacol. Toxicol. 53, 331-354. https://doi.org/10.1146/annurev-pharmtox-010510-100608
-
Monteclaro, F. S. and Charo, I. F. (1996) The amino-terminal extracellular domain of the MCP-1 receptor, but not the RANTES/MIP-
$1{\alpha}$ receptor, confers chemokine selectivity. Evidence for a two-step mechanism for MCP-1 receptor activation. J. Biol. Chem. 271, 19084-19092. https://doi.org/10.1074/jbc.271.32.19084 - Murphy, P. M., Baggiolini, M., Charo, I. F., Hebert, C. A., Horuk, R., Matsushima, K., Miller, L. H., Oppenheim, J. J. and Power, C. A. (2000) International union of pharmacology. XXII. Nomenclature for chemokine receptors. Pharmacol. Rev. 52, 145-176.
- Randolph-Habecker, J. R., Rahill, B., Torok-Storb, B., Vieira, J., Kolattukudy, P. E., Rovin, B. H. and Sedmak, D. D. (2002) The expression of the cytomegalovirus chemokine receptor homolog US28 sequesters biologically active CC chemokines and alters IL-8 production. Cytokine 19, 37-46. https://doi.org/10.1006/cyto.2002.0874
- Rosenfeld, M. E. and Campbell, L. A. (2011) Pathogens and atherosclerosis: update on the potential contribution of multiple infectious organisms to the pathogenesis of atherosclerosis. Thromb. Haemost. 106, 858-867. https://doi.org/10.1160/TH11-06-0392
- Rosenkilde, M. M., Kledal, T. N., Holst, P. J. and Schwartz, T. W. (2000) Selective elimination of high constitutive activity or chemokine binding in the human herpesvirus 8 encoded seven transmembrane oncogene ORF74. J. Biol. Chem. 275, 26309-26315. https://doi.org/10.1074/jbc.M003800200
- Sherrill, J. D. and Miller, W. E. (2006) G protein-coupled receptor (GPCR) kinase 2 regulates agonist-independent Gq/11 signaling from the mouse cytomegalovirus GPCR M33. J. Biol. Chem. 281, 39796-39805. https://doi.org/10.1074/jbc.M610026200
- Slinger, E., Langemeijer, E., Siderius, M., Vischer, H. F. and Smit, M. J. (2011) Herpesvirus-encoded GPCRs rewire cellular signaling. Mol. Cell. Endocrinol. 331, 179-184. https://doi.org/10.1016/j.mce.2010.04.007
- Slinger, E., Maussang, D., Schreiber, A., Siderius, M., Rahbar, A., Fraile-Ramos, A., Lira, S. A., Soderberg-Naucler, C. and Smit, M. J. (2010) HCMV-encoded chemokine receptor US28 mediates proliferative signaling through the IL-6-STAT3 axis. Sci. Signal. 3, ra58.
- Soderberg-Naucler, C., Rahbar, A. and Stragliotto, G. (2013) Survival in patients with glioblastoma receiving valganciclovir. N. Engl. J. Med. 369, 985-986. https://doi.org/10.1056/NEJMc1302145
- Soroceanu, L., Matlaf, L., Bezrookove, V., Harkins, L., Martinez, R., Greene, M., Soteropoulos, P. and Cobbs, C. S. (2011) Human cytomegalovirus US28 found in glioblastoma promotes an invasive and angiogenic phenotype. Cancer Res. 71, 6643-6653. https://doi.org/10.1158/0008-5472.CAN-11-0744
- Streblow, D. N., Soderberg-Naucler, C., Vieira, J., Smith, P., Wakabayashi, E., Ruchti, F., Mattison, K., Altschuler, Y. and Nelson, J. A. (1999) The human cytomegalovirus chemokine receptor US28 mediates vascular smooth muscle cell migration. Cell 99, 511-520. https://doi.org/10.1016/S0092-8674(00)81539-1
- Streblow, D. N., Vomaske, J., Smith, P., Melnychuk, R., Hall, L., Pancheva, D., Smit, M., Casarosa, P., Schlaepfer, D. D. and Nelson, J. A. (2003) Human cytomegalovirus chemokine receptor US28-induced smooth muscle cell migration is mediated by focal adhesion kinase and Src. J. Biol. Chem. 278, 50456-50465. https://doi.org/10.1074/jbc.M307936200
- Tschammer, N. (2014) Allosteric modulation of the G protein-coupled US28 receptor of human cytomegalovirus: are the small-weight inverse agonist of US28 'camouflaged' agonists? Bioorg. Med. Chem. Lett. 24, 3744-3747. https://doi.org/10.1016/j.bmcl.2014.06.082
- Tschische, P., Moser, E., Thompson, D., Vischer, H. F., Parzmair, G. P., Pommer, V., Platzer, W., Schwarzbraun, T., Schaider, H., Smit, M. J., Martini, L., Whistler, J. L. and Waldhoer, M. (2010) The G-protein coupled receptor associated sorting protein GASP-1 regulates the signalling and trafficking of the viral chemokine receptor US28. Traffic 11, 660-674. https://doi.org/10.1111/j.1600-0854.2010.01045.x
- Urban, J. D., Clarke, W. P., von Zastrow, M., Nichols, D. E., Kobilka, B., Weinstein, H., Javitch, J. A., Roth, B. L., Christopoulos, A., Sexton, P. M., Miller, K. J., Spedding, M. and Mailman, R. B. (2007) Functional selectivity and classical concepts of quantitative pharmacology. J. Pharmacol. Exp. Ther. 320, 1-13.
-
Violin, J. D., Ren, X. R. and Lefkowitz, R. J. (2006) G-protein-coupled receptor kinase specificity for
${\beta}$ -arrestin recruitment to the${\beta}_2$ -adrenergic receptor revealed by fluorescence resonance energy transfer. J. Biol. Chem. 281, 20577-20588. https://doi.org/10.1074/jbc.M513605200 - Vischer, H. F., Hulshof, J. W., Hulscher, S., Fratantoni, S. A., Verheij, M. H., Victorina, J., Smit, M. J., de Esch, I. J. and Leurs, R. (2010) Identification of novel allosteric nonpeptidergic inhibitors of the human cytomegalovirus-encoded chemokine receptor US28. Bioorg. Med. Chem. 18, 675-688. https://doi.org/10.1016/j.bmc.2009.11.060
- Vischer, H. F., Siderius, M., Leurs, R. and Smit, M. J. (2014) Herpesvirus-encoded GPCRs: neglected players in inflammatory and proliferative diseases? Nat. Rev. Drug Discov. 13, 123-139. https://doi.org/10.1038/nrd4189
- Vomaske, J., Nelson, J. A. and Streblow, D. N. (2009) Human Cytomegalovirus US28: a functionally selective chemokine binding receptor. Infect. Disord. Drug Targets 9, 548-556. https://doi.org/10.2174/187152609789105696
- Waldhoer, M., Casarosa, P., Rosenkilde, M. M., Smit, M. J., Leurs, R., Whistler, J. L. and Schwartz, T. W. (2003) The carboxyl terminus of human cytomegalovirus-encoded 7 transmembrane receptor US28 camouflages agonism by mediating constitutive endocytosis. J. Biol. Chem. 278, 19473-19482. https://doi.org/10.1074/jbc.M213179200
- Waldhoer, M., Kledal, T. N., Farrell, H. and Schwartz, T. W. (2002) Murine cytomegalovirus (CMV) M33 and human CMV US28 receptors exhibit similar constitutive signaling activities. J. Virol. 76, 8161-8168. https://doi.org/10.1128/JVI.76.16.8161-8168.2002
- Zhang, J., Feng, H., Xu, S. and Feng, P. (2016) Hijacking GPCRs by viral pathogens and tumor. Biochem. Pharmacol. 114, 69-81. https://doi.org/10.1016/j.bcp.2016.03.021
- Zhang, J., He, S., Wang, Y., Brulois, K., Lan, K., Jung, J. U. and Feng, P. (2015) Herpesviral G protein-coupled receptors activate NFAT to induce tumor formation via inhibiting the SERCA calcium ATPase. PLoS Pathog. 11, e1004768. https://doi.org/10.1371/journal.ppat.1004768
Cited by
- Conceptual Progress for the Improvements in the Selectivity and Efficacy of G Protein-Coupled Receptor Therapeutics: An Overview vol.25, pp.1, 2017, https://doi.org/10.4062/biomolther.2016.262
- Cyclophilin A as a target in the treatment of cytomegalovirus infections vol.26, pp.2040-2066, 2018, https://doi.org/10.1177/2040206618811413
- US28: HCMV’s Swiss Army Knife vol.10, pp.8, 2018, https://doi.org/10.3390/v10080445
- HCMV latency: what regulates the regulators? pp.1432-1831, 2019, https://doi.org/10.1007/s00430-019-00581-1
- Modulation of Innate Immune Signaling Pathways by Herpesviruses vol.11, pp.6, 2017, https://doi.org/10.3390/v11060572
- A comprehensive review on the antiviral activities of chalcones vol.29, pp.4, 2021, https://doi.org/10.1080/1061186x.2020.1853759
- Molecular Properties and Therapeutic Targeting of the EBV-Encoded Receptor BILF1 vol.13, pp.16, 2017, https://doi.org/10.3390/cancers13164079