DOI QR코드

DOI QR Code

Fabrication of a Nano/Microfiber Hybrid Mat for Control of Mechanical Properties and Porosity

기계적 특성 및 공극률 조절을 위한 나노/마이크로섬유 하이브리드 매트 제작

  • Kim, Jeong Hwa (Dept. of Mechanical Engineering, Graduate School, Kyungpook Nati'l Univ.) ;
  • Jeong, Young Hun (School of Mechanical Engineering, Kyungpook Nati'l Univ.)
  • 김정화 (경북대학교 일반대학원 기계공학과) ;
  • 정영훈 (경북대학교 기계공학부)
  • Received : 2016.08.18
  • Accepted : 2016.09.29
  • Published : 2017.01.01

Abstract

Fine polymeric fibers have been gaining interest from the energy harvesting/storage, tissue, and bioengineering industries because of advantages such as the small diameter, high porosity, permeability, and similarities to a natural extracellular matrix. Electrospinning is one of the most popular methods used to fabricate polymeric fibers because it is not as limited in regards to the materials selection, and it does not require expensive or complex equipment. However, electrospun fibers have a severe aerodynamic instability because the small diameter fibers are able to pass through the atmospheric layer when there is a high electric field. As a result, electrospun fibrous mats have serious difficulties with controlling its shape and geometric properties. In this study, a hybrid nano/microfibrous mat is presented that is fabricated using electrospinning with two different solvent-based PCL solutions. This provides control of the fiber diameter, mat porosity, and mechanical properties. Various hybrid fibrous mats were fabricated after an experimental investigation of the effects of solvent on fiber diameter. It was then demonstrated that the mechanical properties and porosity of the fabricated various hybrid mats could be successfully controlled.

최근 에너지, 바이오공학, 전자공학 등 다양한 분야에서 초미세 고분자섬유의 활용이 증대되고 있다. 이러한 고분자 섬유의 제작방법의 하나로서 전기방사법은 타 공정에 비해 공정장치가 간단하고 재료의 선택에 제한이 적은 등 다양한 장점을 가져 활발하게 사용되고 있다. 그러나 전기방사공정은 미세한 고분자 섬유가 전기장이 부가된 공기층을 통과하면서 높은 불안정성을 가지기 때문에 전기방사공정을 통해 제작되는 섬유매트의 형상 및 기하학적 특성의 조절이 어려운 단점을 가지고 있다. 본 연구에서는 서로 다른 두 가지 용매를 이용하여 섬유의 직경을 나노섬유와 마이크로섬유로 제작할 수 있음을 보였으며, 이를 조합하여 기계적 특성과 공극률을 조절할 수 있는 하이브리드 섬유매트를 제작할 수 있음을 보였다. 또한 제작된 매트를 이용하여 기계적 특성과 공극률이 조절될 수 있음을 확인하였다.

Keywords

References

  1. Dzenis, Y., 2004, "Spinning Continuous Fibers for Nanotechnology," Science, Vol. 304, No. 5679, pp. 1917-1919. https://doi.org/10.1126/science.1099074
  2. Huang, Z. M., Zhang, Y. Z., Kotaki, M. and Ramakrishna, S., 2003, "A Review on Polymer Nanofibers by Electrospinning and Their Applications in Nanocomposites," Composites science and technology, Vol. 63, No. 15, pp. 2223-2253. https://doi.org/10.1016/S0266-3538(03)00178-7
  3. Ramakrishna, S., Fujihara, K., Teo, W. E., Lim, T. C. and Ma, Z., 2005, "An Introduction to Electrospinning and Nanofibers," World Scientific, Vol. 90.
  4. Kim, G., Park, S., Lee, J. and Ahn, Y., 2005, "Fabrication of Polycarbonate Nano Fibers Using Electrospinning," Trans. Korean Soc. Mech. Eng. B, Vol. 29, No. 4, pp. 512-518. https://doi.org/10.3795/KSME-B.2005.29.4.512
  5. Kim, K., Kim, T., Lee, J., Ahn, J., Park, S. and Kim, H., 2015, "Performance Evaluation of PAN Nanofiber Air Filter Fabricated by Electrospinning," Trans. Korean Soc. Mech. Eng. B, Vol. 39, No. 11, pp. 885-890. https://doi.org/10.3795/KSME-B.2015.39.11.885
  6. Zhang, D. H. and Kwon, K. S., 2015, "High Speed and Continuous Electrospinning Printing Using Polymer Ink," Trans. Korean Soc. Mech. Eng. B, Vo. 39, No. 4, pp. 379-384. https://doi.org/10.3795/KSME-B.2015.39.4.379
  7. Deitzel, J. M., Kleinmeyer, J., Harris, D. and Beck Tan, N. C., 2001, "The Effect of Processing Variables on the Morphology of Electrospun Nanofibers and Textiles," Polymer, Vol. 42, No. 1, pp. 261-272. https://doi.org/10.1016/S0032-3861(00)00250-0
  8. Lee, J., Lee, S. Y., Jang, J., Jeong, Y. H. and Cho, D. W., 2012, "Fabrication of Patterned Nanofibrous Mats Using Direct-Write Electrospinning," Langmuir, Vol. 28, No. 18, pp. 7267-7275. https://doi.org/10.1021/la3009249
  9. Pham, Q. P., Sharma, U. and Mikos, A. G., 2006, "Electrospun Poly (${\varepsilon}$-caprolactone) Microfiber and Multilayer Nanofiber/Microfiber Scaffolds: Characterization of Scaffolds and Measurement of Cellular Infiltration," Biomacromolecules, Vol. 7, No. 10, pp. 2796-2805. https://doi.org/10.1021/bm060680j
  10. Kim, S. J., Jang, D. H., Park, W. H. and Min, B. M., 2010, "Fabrication and Characterization of 3-Dimensional PLGA Nanofiber/Microfiber Composite Scaffolds," Polymer, Vol. 51, No. 6, pp. 1320-1327. https://doi.org/10.1016/j.polymer.2010.01.025
  11. Kim, B. S., Park, K. E., Kim, M. H., You, H. K., Lee, J. and Park, W. H., 2015, "Effect of Nanofiber Content on Bone Regeneration of Silk Fibroin/Poly (${\varepsilon}$-caprolactone) Nano/Microfibrous Composite Scaffolds," International Journal of Nanomedicine, Vol. 10, No. 485, pp. 485-502.
  12. Li, D., Wang, Y. and Xia, Y., 2003, "Electrospinning of Polymeric and Ceramic Nanofibers as Uniaxially Aligned Arrays," Nano Letters, Vol. 3, No. 8, pp. 1167-1171. https://doi.org/10.1021/nl0344256
  13. Katta, P., Alessandro, M., Ramsier, R. and Chase, G., 2004, "Continuous Electrospinning of Aligned Polymer Nanofibers Onto a Wire Drum Collector," Nano Letters, Vo. 4, No. 11, pp. 2215-2218. https://doi.org/10.1021/nl0486158
  14. Reneker, D. H. and Yarin, A. L., 2008, "Electrospinning Jets and Polymer Nanofibers," Polymer, Vol. 49, No. 10, pp. 2387-2425. https://doi.org/10.1016/j.polymer.2008.02.002
  15. Santos, M., Pashkuleva, I., Alves, C., Gomes, M. E., Fuchs, S., Unger, R. E., Reis, R. and Kirkpatrick, C. J., 2009, "Surface-modified 3D Starch-based Scaffold for Improved Endothelialization for Bone Tissue Engineering," Journal of Materials Chemistry, Vol. 19, No. 24, pp. 4091-4101. https://doi.org/10.1039/b819089e
  16. Hutmacher, D. W., Schantz, T., Zein, I., Ng, K. W., Teoh, S. H. and Tan, K. C., 2001, "Mechanical Properties and Cell Cultural Response of Polycaprolactone Scaffolds Designed and Fabricated via Fused Deposition Modeling," Journal of Biomedical Materials Research, Vol. 55, No. 2, pp. 203-216. https://doi.org/10.1002/1097-4636(200105)55:2<203::AID-JBM1007>3.0.CO;2-7
  17. Domb, A. J., Kost, J. and Wiseman, D., 1998, "Handbook of Biodegradable Polymers" Vol. 7, CRC Press.