DOI QR코드

DOI QR Code

Stability of Tip in Adhesion Process on Atomic Force Microscopy Studied by Coupling Computational Model

  • Senda, Yasuhiro (Department of Applied Science, Yamaguchi University) ;
  • Blomqvist, Janne (COMP Centre of Excellence, Department of Applied Physics, Aalto University) ;
  • Nieminen, Risto M. (COMP Centre of Excellence, Department of Applied Physics, Aalto University)
  • Received : 2016.11.14
  • Accepted : 2016.12.02
  • Published : 2017.01.31

Abstract

We investigated the stability of ionic configurations of the tip of the cantilever in non-contact AFM.; For this, we used a computational model that couples the ionic motion of the MgO surface and the oscillating cantilever. The motion of ions was connected to the oscillating cantilever using a coupling method that had been recently developed. The adhesive process on the ionic MgO surface leads to energy dissipation of the cantilever. It is shown that limited types of ionic configurations of the tip are stable during the adhesive process. Based on the present computational model, we discuss the adhesive mechanism leading to energy dissipation.

Keywords

References

  1. S. Morita, R. Wiesendanger, and E. Meyer Noncontact Atomic Microscopy (Springer, 2002).
  2. B. Anczykowski et al., Appl. Surf. Sci. 140, 376 (1999). https://doi.org/10.1016/S0169-4332(98)00558-3
  3. R. Bennewitz et al., Phys. Rev. B 62, 2074 (2000). https://doi.org/10.1103/PhysRevB.62.2074
  4. C. Loppacher et al., Phys. Rev. B 62, 13674 (2000). https://doi.org/10.1103/PhysRevB.62.13674
  5. T. Fukuma et al., Jpn. J. Appl. Phys. 41, 4903 (2002). https://doi.org/10.1143/JJAP.41.4903
  6. H. J. Hug and A. Baratoff in Noncontact Atomic Microscopy edited by S. Morita, R. Wiesen-danger, and E. Meyer (Springer, 2002) Chap. 20.
  7. M. Ashino, R. Wiesendanger, A. N. Khlobystov, S. Berber, and D. Tomanek, Phys. Rev. Lett. 102, 195503 (2009). https://doi.org/10.1103/PhysRevLett.102.195503
  8. Y. Naito et al., J. Phys. Soc. Jpn. 79, 013601 (2010). https://doi.org/10.1143/JPSJ.79.013601
  9. K. Iwata, S. Yamazaki, Y. Tani, and Y. Sugimoto, Appl. Phys. Express 6, 055201 (2013). https://doi.org/10.7567/APEX.6.055201
  10. A. L. Shluger, L. N. Kantorovich, A. I. Livshits, and M. J. Gillan, Phys. Rev. B 56 15332 (1997). https://doi.org/10.1103/PhysRevB.56.15332
  11. G. Cross et al., Phys. Rev. Lett. 80, 4685 (1998). https://doi.org/10.1103/PhysRevLett.80.4685
  12. N. Sasaki and M. Tsukada, Jpn. J. Appl. Phys. 39, L1334 (2000). https://doi.org/10.1143/JJAP.39.L1334
  13. T. Trevethan and L. Kantorovich, Nanotech. 16, S79 (2005). https://doi.org/10.1088/0957-4484/16/3/015
  14. L. N. Kantorovich and T. Trevethan, Phys. Rev. Lett. 93, 236102 (2004). https://doi.org/10.1103/PhysRevLett.93.236102
  15. T. Trevethan and L. Kantorovich, Nanotech. 17, S205 (2006). https://doi.org/10.1088/0957-4484/17/7/S18
  16. S. Kawai, F. Federici Canova, T. Glatzel, A. S. Foster, and E. Meyer, Phys. Rev. B 84,115415 (2011). https://doi.org/10.1103/PhysRevB.84.115415
  17. F. Federici Canova and Adam S Foster, Nanotech. 22, 045702 (2011). https://doi.org/10.1088/0957-4484/22/4/045702
  18. M. Gauthier and M. Tsukada, Phys. Rev. B 60, 11716 (1999). https://doi.org/10.1103/PhysRevB.60.11716
  19. L. N. Kantorovich, Phys. Rev. B 64,245409 (2001). https://doi.org/10.1103/PhysRevB.64.245409
  20. M. Gauthier, R. Paerez, T. Arai, M. Tomitori, and M. Tsukada, Phys. Rev. Lett.89, 146104 (2002). https://doi.org/10.1103/PhysRevLett.89.146104
  21. T. Trevethan and L. Kantorovich, Phys. Rev. B 70, 115411 (2004). https://doi.org/10.1103/PhysRevB.70.115411
  22. T. Trevethan and L. Kantorovich, Nanotech. 15, S44 (2004). https://doi.org/10.1088/0957-4484/15/2/010
  23. Y. Senda et al., Integrated Ferroelectrics 155, 33 (2014). https://doi.org/10.1080/10584587.2014.905108
  24. Y. Senda et al., e-J. Surf. Sci. Nanotech. 12 339 (2014). https://doi.org/10.1380/ejssnt.2014.339
  25. Y. Senda et al., J. of Phys.: Condes. Matter 28,375001 (2016). https://doi.org/10.1088/0953-8984/28/37/375001
  26. G. Kim and Y. Senda, J. of Phys.: Condens. Matter 19, 246203 (2007). https://doi.org/10.1088/0953-8984/19/24/246203
  27. Y. Senda and G. Kim, Prog. of Theor. Phys. Suppl. 178, 141 (2009).
  28. Y. Senda et al., J. of Chem. Phys.137, 154115 (2012). https://doi.org/10.1063/1.4759036
  29. M. Matsui, J. Chem. Phys. 91, 489 (1989). https://doi.org/10.1063/1.457484

Cited by

  1. Analysis of Tip Stability in Adhesion Process in AFM Using Potential Energy Surface: Stability Versus Dissipation vol.16, pp.0, 2018, https://doi.org/10.1380/ejssnt.2018.132