DOI QR코드

DOI QR Code

MAP Kinase-Mediated Negative Regulation of Symbiotic Nodule Formation in Medicago truncatula

  • Ryu, Hojin (Department of Life Sciences, POSTECH Biotech Center, Pohang University of Science and Technology) ;
  • Laffont, Carole (Institute of Plant Sciences-Paris-Saclay (IPS2), CNRS, INRA, Univ Paris-Sud, Univ Paris-Diderot, Univ d'Evry, Universite Paris-Saclay) ;
  • Frugier, Florian (Institute of Plant Sciences-Paris-Saclay (IPS2), CNRS, INRA, Univ Paris-Sud, Univ Paris-Diderot, Univ d'Evry, Universite Paris-Saclay) ;
  • Hwang, Ildoo (Department of Life Sciences, POSTECH Biotech Center, Pohang University of Science and Technology)
  • Received : 2016.08.31
  • Accepted : 2016.12.27
  • Published : 2017.01.31

Abstract

Mitogen-activated protein kinase (MAPK) signaling cascades play critical roles in various cellular events in plants, including stress responses, innate immunity, hormone signaling, and cell specificity. MAPK-mediated stress signaling is also known to negatively regulate nitrogen-fixing symbiotic interactions, but the molecular mechanism of the MAPK signaling cascades underlying the symbiotic nodule development remains largely unknown. We show that the MtMKK5-MtMPK3/6 signaling module negatively regulates the early symbiotic nodule formation, probably upstream of ERN1 (ERF Required for Nodulation 1) and NSP1 (Nod factor Signaling Pathway 1) in Medicago truncatula. The overexpression of MtMKK5 stimulated stress and defense signaling pathways but also reduced nodule formation in M. truncatula roots. Conversely, a MAPK specific inhibitor, U0126, enhanced nodule formation and the expression of an early nodulation marker gene, MtNIN. We found that MtMKK5 directly activates MtMPK3/6 by phosphorylating the TEY motif within the activation loop and that the MtMPK3/6 proteins physically interact with the early nodulation-related transcription factors ERN1 and NSP1. These data suggest that the stress signaling-mediated MtMKK5/MtMPK3/6 module suppresses symbiotic nodule development via the action of early nodulation transcription factors.

Keywords

References

  1. Ane, J.M., Kiss, G.B., Riely, B.K., Penmetsa, R.V., Oldroyd, G.E., Ayax, C., Levy, J., Debelle, F., Baek, J.M., Kalo, P., et al. (2004). Medicago truncatula DMI1 required for bacterial and fungal symbioses in legumes. Science 303, 1364-1367. https://doi.org/10.1126/science.1092986
  2. Capoen, W., and Oldroyd, G. (2008). How CYCLOPS keeps an eye on plant symbiosis. Proc. Natl. Acad. Sci. USA 105, 20053-20054. https://doi.org/10.1073/pnas.0811417106
  3. Chen, T., Zhu, H., Ke, D., Cai, K., Wang, C., Gou, H., Hong, Z., and Zhang, Z. (2012). A MAP kinase kinase interacts with SymRK and regulates nodule organogenesis in Lotus japonicus. Plant Cell 24, 823-838. https://doi.org/10.1105/tpc.112.095984
  4. Crespi, M., and Frugier, F. (2008). De novo organ formation from differentiated cells: root nodule organogenesis. Sci. Signal. 1, re11.
  5. Ding, Y., Kalo, P., Yendrek, C., Sun, J., Liang, Y., Marsh, J.F., Harris, J.M., and Oldroyd, G.E. (2008). Abscisic acid coordinates Nod factor and cytokinin signaling during the regulation of nodulation in Medicago truncatula. Plant Cell 20, 2681-2695. https://doi.org/10.1105/tpc.108.061739
  6. Duzan, H.M., Zhou, X., Souleimanov, A., and Smith, D.L. (2004). Perception of Bradyrhizobium japonicum Nod factor by soybean [Glycine max (L.) Merr.] root hairs under abiotic stress conditions. J. Exp. Bot. 55, 2641-2646. https://doi.org/10.1093/jxb/erh265
  7. Geurts, R., Xiao, T.T., and Reinhold-Hurek, B. (2016). What does it take to evolve a nitrogen-fixing endosymbiosis? Trends Plant Sci. 21, 199-208. https://doi.org/10.1016/j.tplants.2016.01.012
  8. Gherbi, H., Markmann, K., Svistoonoff, S., Estevan, J., Autran, D., Giczey, G., Auguy, F., Peret, B., Laplaze, L., Franche, C., et al. (2008). SymRK defines a common genetic basis for plant root endosymbioses with arbuscular mycorrhiza fungi, rhizobia, and Frankiabacteria. Proc. Natl. Acad. Sci. USA 105, 4928-4932. https://doi.org/10.1073/pnas.0710618105
  9. Gleason, C., Chaudhuri, S., Yang, T., Munoz, A., Poovaiah, B.W., and Oldroyd, G.E. (2006). Nodulation independent of rhizobia induced by a calcium-activated kinase lacking autoinhibition. Nature 441, 1149-1152. https://doi.org/10.1038/nature04812
  10. Hamel, L.P., and Beaudoin, N. (2010). Chitooligosaccharide sensing and downstream signaling: contrasted outcomes in pathogenic and beneficial plant-microbe interactions. Planta 232, 787-806. https://doi.org/10.1007/s00425-010-1215-9
  11. Hamel, L.P., Nicole, M.C., Sritubtim, S., Morency, M.J., Ellis, M., Ehlting, J., Beaudoin, N., Barbazuk, B., Klessig, D., Lee, J., et al. (2006). Ancient signals: comparative genomics of plant MAPK and MAPKK gene families. Trends Plant Sci. 11, 192-198. https://doi.org/10.1016/j.tplants.2006.02.007
  12. Hamel, L.P., Nicole, M.C., Duplessis, S., and Ellis, B.E. (2012). Mitogen-activated protein kinase signaling in plant-interacting fungi: distinct messages from conserved messengers. Plant Cell 24, 1327-1351. https://doi.org/10.1105/tpc.112.096156
  13. Hwang, I., and Sheen, J. (2001). Two-component circuitry in Arabidopsis cytokinin signal transduction. Nature 413, 383-389. https://doi.org/10.1038/35096500
  14. Lohar, D.P., Sharopova, N., Endre, G., Penuela, S., Samac, D., Town, C., Silverstein, K.A., and VandenBosch, K.A. (2006). Transcript analysis of early nodulation events in Medicago truncatula. Plant Physiol. 140, 221-234.
  15. Lopez-Gomez, M., Sandal, N., Stougaard, J., and Boller, T. (2012). Interplay of flg22-induced defence responses and nodulation in Lotus japonicus. J. Exp. Bot. 63, 393-401. https://doi.org/10.1093/jxb/err291
  16. Madsen, E.B., Madsen, L.H., Radutoiu, S., Olbryt, M., Rakwalska, M., Szczyglowski, K., Sato, S., Kaneko, T., Tabata, S., Sandal, N., et al. (2003). A receptor kinase gene of the LysM type is involved in legume perception of rhizobial signals. Nature 425, 637-640. https://doi.org/10.1038/nature02045
  17. Madsen, L.H., Tirichine, L., Jurkiewicz, A., Sullivan, J.T., Heckmann, A.B., Bek, A.S., Ronson, C.W., James, E.K., and Stougaard, J. (2010). The molecular network governing nodule organogenesis and infection in the model legume Lotus japonicus. Nat. Commun. 1, 10.
  18. Oldroyd, G.E. (2013). Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nat. Rev. Microbiol. 11, 252-263. https://doi.org/10.1038/nrmicro2990
  19. Oldroyd, G.E., Murray, J.D., Poole, P.S., and Downie, J.A. (2011). The rules of engagement in the legume-rhizobial symbiosis. Annu. Rev. Gene. 45, 119-144. https://doi.org/10.1146/annurev-genet-110410-132549
  20. Perret, X., Staehelin, C., and Broughton, W.J. (2000). Molecular basis of symbiotic promiscuity. Microbiol. Mol. Biol. Rev. 64, 180-201. https://doi.org/10.1128/MMBR.64.1.180-201.2000
  21. Remigi, P., Zhu, J., Young, J.P., and Masson-Boivin, C. (2016). Symbiosis within symbiosis: evolving nitrogen-Fixing legume symbionts. Trends Microbiol. 24, 63-75. https://doi.org/10.1016/j.tim.2015.10.007
  22. Rodriguez, M.C., Petersen, M., and Mundy, J. (2010). Mitogen-activated protein kinase signaling in plants. Annu. Rev. Plant Biol. 61, 621-649. https://doi.org/10.1146/annurev-arplant-042809-112252
  23. Ryu, H., Cho, H., Choi, D., and Hwang, I. (2012). Plant hormonal regulation of nitrogen-fixing nodule organogenesis. Mol. Cells 34, 117-126. https://doi.org/10.1007/s10059-012-0131-1
  24. Schauser, L., Roussis, A., Stiller, J., and Stougaard, J. (1999). A plant regulator controlling development of symbiotic root nodules. Nature 402, 191-195. https://doi.org/10.1038/46058
  25. Searle, I.R., Men, A.E., Laniya, T.S., Buzas, D.M., Iturbe-Ormaetxe, I., Carroll, B.J., and Gresshoff, P.M. (2003). Long-distance signaling in nodulation directed by a CLAVATA1-like receptor kinase. Science 299, 109-112. https://doi.org/10.1126/science.1077937
  26. Smit, P., Raedts, J., Portyanko, V., Debelle, F., Gough, C., Bisseling, T., and Geurts, R. (2005). NSP1 of the GRAS protein family is essential for rhizobial Nod factor-induced transcription. Science 308, 1789-1791. https://doi.org/10.1126/science.1111025
  27. Soyano, T., and Hayashi, M. (2014). Transcriptional networks leading to symbiotic nodule organogenesis. Curr. Opin. Plant Biol. 20, 146-154. https://doi.org/10.1016/j.pbi.2014.07.010
  28. Tena, G., Asai, T., Chiu, W.L., and Sheen, J. (2001). Plant mitogen-activated protein kinase signaling cascades. Curr. Opin. Plant. Biol. 4, 392-400. https://doi.org/10.1016/S1369-5266(00)00191-6
  29. Tena, G., Boudsocq, M., and Sheen, J. (2011). Protein kinase signaling networks in plant innate immunity. Curr. Opin. Plant. Biol. 14, 519-529. https://doi.org/10.1016/j.pbi.2011.05.006
  30. Yoo, S.D., Cho, Y.H., Tena, G., Xiong, Y., and Sheen, J. (2008). Dual control of nuclear EIN3 by bifurcate MAPK cascades in C2H4 signalling. Nature 451, 789-795. https://doi.org/10.1038/nature06543

Cited by

  1. Phylogenomic analysis of MKKs and MAPKs from 16 legumes and detection of interacting pairs in chickpea divulge MAPK signalling modules vol.7, pp.1, 2017, https://doi.org/10.1038/s41598-017-04913-0
  2. reduces infection by a root pathogenic bacterium, but not nitrogen-fixing rhizobial symbiosis pp.14677644, 2018, https://doi.org/10.1111/pbi.12999
  3. Development vol.108, pp.6, 2018, https://doi.org/10.1094/PHYTO-07-17-0240-R
  4. Cell and Developmental Biology of Plant Mitogen-Activated Protein Kinases vol.69, pp.1, 2018, https://doi.org/10.1146/annurev-arplant-042817-040314
  5. Nuclear Signaling of Plant MAPKs vol.9, pp.1664-462X, 2018, https://doi.org/10.3389/fpls.2018.00469
  6. An MAP kinase interacts with LHK1 and regulates nodule organogenesis in Lotus japonicus pp.1869-1889, 2019, https://doi.org/10.1007/s11427-018-9444-9
  7. The mitogen activated protein kinase (MAPK) gene family functions as a cohort during the Glycine max defense response to Heterodera glycines vol.137, pp.None, 2017, https://doi.org/10.1016/j.plaphy.2019.01.018
  8. Phytohormones jasmonic acid, salicylic acid, gibberellins, and abscisic acid are key mediators of plant secondary metabolites vol.7, pp.3, 2017, https://doi.org/10.4103/wjtcm.wjtcm_20_21
  9. Overexpression of alfalfa SIMK promotes root hair growth, nodule clustering and shoot biomass production vol.19, pp.4, 2017, https://doi.org/10.1111/pbi.13503