References
- Ane, J.M., Kiss, G.B., Riely, B.K., Penmetsa, R.V., Oldroyd, G.E., Ayax, C., Levy, J., Debelle, F., Baek, J.M., Kalo, P., et al. (2004). Medicago truncatula DMI1 required for bacterial and fungal symbioses in legumes. Science 303, 1364-1367. https://doi.org/10.1126/science.1092986
- Capoen, W., and Oldroyd, G. (2008). How CYCLOPS keeps an eye on plant symbiosis. Proc. Natl. Acad. Sci. USA 105, 20053-20054. https://doi.org/10.1073/pnas.0811417106
- Chen, T., Zhu, H., Ke, D., Cai, K., Wang, C., Gou, H., Hong, Z., and Zhang, Z. (2012). A MAP kinase kinase interacts with SymRK and regulates nodule organogenesis in Lotus japonicus. Plant Cell 24, 823-838. https://doi.org/10.1105/tpc.112.095984
- Crespi, M., and Frugier, F. (2008). De novo organ formation from differentiated cells: root nodule organogenesis. Sci. Signal. 1, re11.
- Ding, Y., Kalo, P., Yendrek, C., Sun, J., Liang, Y., Marsh, J.F., Harris, J.M., and Oldroyd, G.E. (2008). Abscisic acid coordinates Nod factor and cytokinin signaling during the regulation of nodulation in Medicago truncatula. Plant Cell 20, 2681-2695. https://doi.org/10.1105/tpc.108.061739
- Duzan, H.M., Zhou, X., Souleimanov, A., and Smith, D.L. (2004). Perception of Bradyrhizobium japonicum Nod factor by soybean [Glycine max (L.) Merr.] root hairs under abiotic stress conditions. J. Exp. Bot. 55, 2641-2646. https://doi.org/10.1093/jxb/erh265
- Geurts, R., Xiao, T.T., and Reinhold-Hurek, B. (2016). What does it take to evolve a nitrogen-fixing endosymbiosis? Trends Plant Sci. 21, 199-208. https://doi.org/10.1016/j.tplants.2016.01.012
- Gherbi, H., Markmann, K., Svistoonoff, S., Estevan, J., Autran, D., Giczey, G., Auguy, F., Peret, B., Laplaze, L., Franche, C., et al. (2008). SymRK defines a common genetic basis for plant root endosymbioses with arbuscular mycorrhiza fungi, rhizobia, and Frankiabacteria. Proc. Natl. Acad. Sci. USA 105, 4928-4932. https://doi.org/10.1073/pnas.0710618105
- Gleason, C., Chaudhuri, S., Yang, T., Munoz, A., Poovaiah, B.W., and Oldroyd, G.E. (2006). Nodulation independent of rhizobia induced by a calcium-activated kinase lacking autoinhibition. Nature 441, 1149-1152. https://doi.org/10.1038/nature04812
- Hamel, L.P., and Beaudoin, N. (2010). Chitooligosaccharide sensing and downstream signaling: contrasted outcomes in pathogenic and beneficial plant-microbe interactions. Planta 232, 787-806. https://doi.org/10.1007/s00425-010-1215-9
- Hamel, L.P., Nicole, M.C., Sritubtim, S., Morency, M.J., Ellis, M., Ehlting, J., Beaudoin, N., Barbazuk, B., Klessig, D., Lee, J., et al. (2006). Ancient signals: comparative genomics of plant MAPK and MAPKK gene families. Trends Plant Sci. 11, 192-198. https://doi.org/10.1016/j.tplants.2006.02.007
- Hamel, L.P., Nicole, M.C., Duplessis, S., and Ellis, B.E. (2012). Mitogen-activated protein kinase signaling in plant-interacting fungi: distinct messages from conserved messengers. Plant Cell 24, 1327-1351. https://doi.org/10.1105/tpc.112.096156
- Hwang, I., and Sheen, J. (2001). Two-component circuitry in Arabidopsis cytokinin signal transduction. Nature 413, 383-389. https://doi.org/10.1038/35096500
- Lohar, D.P., Sharopova, N., Endre, G., Penuela, S., Samac, D., Town, C., Silverstein, K.A., and VandenBosch, K.A. (2006). Transcript analysis of early nodulation events in Medicago truncatula. Plant Physiol. 140, 221-234.
- Lopez-Gomez, M., Sandal, N., Stougaard, J., and Boller, T. (2012). Interplay of flg22-induced defence responses and nodulation in Lotus japonicus. J. Exp. Bot. 63, 393-401. https://doi.org/10.1093/jxb/err291
- Madsen, E.B., Madsen, L.H., Radutoiu, S., Olbryt, M., Rakwalska, M., Szczyglowski, K., Sato, S., Kaneko, T., Tabata, S., Sandal, N., et al. (2003). A receptor kinase gene of the LysM type is involved in legume perception of rhizobial signals. Nature 425, 637-640. https://doi.org/10.1038/nature02045
- Madsen, L.H., Tirichine, L., Jurkiewicz, A., Sullivan, J.T., Heckmann, A.B., Bek, A.S., Ronson, C.W., James, E.K., and Stougaard, J. (2010). The molecular network governing nodule organogenesis and infection in the model legume Lotus japonicus. Nat. Commun. 1, 10.
- Oldroyd, G.E. (2013). Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nat. Rev. Microbiol. 11, 252-263. https://doi.org/10.1038/nrmicro2990
- Oldroyd, G.E., Murray, J.D., Poole, P.S., and Downie, J.A. (2011). The rules of engagement in the legume-rhizobial symbiosis. Annu. Rev. Gene. 45, 119-144. https://doi.org/10.1146/annurev-genet-110410-132549
- Perret, X., Staehelin, C., and Broughton, W.J. (2000). Molecular basis of symbiotic promiscuity. Microbiol. Mol. Biol. Rev. 64, 180-201. https://doi.org/10.1128/MMBR.64.1.180-201.2000
- Remigi, P., Zhu, J., Young, J.P., and Masson-Boivin, C. (2016). Symbiosis within symbiosis: evolving nitrogen-Fixing legume symbionts. Trends Microbiol. 24, 63-75. https://doi.org/10.1016/j.tim.2015.10.007
- Rodriguez, M.C., Petersen, M., and Mundy, J. (2010). Mitogen-activated protein kinase signaling in plants. Annu. Rev. Plant Biol. 61, 621-649. https://doi.org/10.1146/annurev-arplant-042809-112252
- Ryu, H., Cho, H., Choi, D., and Hwang, I. (2012). Plant hormonal regulation of nitrogen-fixing nodule organogenesis. Mol. Cells 34, 117-126. https://doi.org/10.1007/s10059-012-0131-1
- Schauser, L., Roussis, A., Stiller, J., and Stougaard, J. (1999). A plant regulator controlling development of symbiotic root nodules. Nature 402, 191-195. https://doi.org/10.1038/46058
- Searle, I.R., Men, A.E., Laniya, T.S., Buzas, D.M., Iturbe-Ormaetxe, I., Carroll, B.J., and Gresshoff, P.M. (2003). Long-distance signaling in nodulation directed by a CLAVATA1-like receptor kinase. Science 299, 109-112. https://doi.org/10.1126/science.1077937
- Smit, P., Raedts, J., Portyanko, V., Debelle, F., Gough, C., Bisseling, T., and Geurts, R. (2005). NSP1 of the GRAS protein family is essential for rhizobial Nod factor-induced transcription. Science 308, 1789-1791. https://doi.org/10.1126/science.1111025
- Soyano, T., and Hayashi, M. (2014). Transcriptional networks leading to symbiotic nodule organogenesis. Curr. Opin. Plant Biol. 20, 146-154. https://doi.org/10.1016/j.pbi.2014.07.010
- Tena, G., Asai, T., Chiu, W.L., and Sheen, J. (2001). Plant mitogen-activated protein kinase signaling cascades. Curr. Opin. Plant. Biol. 4, 392-400. https://doi.org/10.1016/S1369-5266(00)00191-6
- Tena, G., Boudsocq, M., and Sheen, J. (2011). Protein kinase signaling networks in plant innate immunity. Curr. Opin. Plant. Biol. 14, 519-529. https://doi.org/10.1016/j.pbi.2011.05.006
- Yoo, S.D., Cho, Y.H., Tena, G., Xiong, Y., and Sheen, J. (2008). Dual control of nuclear EIN3 by bifurcate MAPK cascades in C2H4 signalling. Nature 451, 789-795. https://doi.org/10.1038/nature06543
Cited by
- Phylogenomic analysis of MKKs and MAPKs from 16 legumes and detection of interacting pairs in chickpea divulge MAPK signalling modules vol.7, pp.1, 2017, https://doi.org/10.1038/s41598-017-04913-0
- reduces infection by a root pathogenic bacterium, but not nitrogen-fixing rhizobial symbiosis pp.14677644, 2018, https://doi.org/10.1111/pbi.12999
- Development vol.108, pp.6, 2018, https://doi.org/10.1094/PHYTO-07-17-0240-R
- Cell and Developmental Biology of Plant Mitogen-Activated Protein Kinases vol.69, pp.1, 2018, https://doi.org/10.1146/annurev-arplant-042817-040314
- Nuclear Signaling of Plant MAPKs vol.9, pp.1664-462X, 2018, https://doi.org/10.3389/fpls.2018.00469
- An MAP kinase interacts with LHK1 and regulates nodule organogenesis in Lotus japonicus pp.1869-1889, 2019, https://doi.org/10.1007/s11427-018-9444-9
- The mitogen activated protein kinase (MAPK) gene family functions as a cohort during the Glycine max defense response to Heterodera glycines vol.137, pp.None, 2017, https://doi.org/10.1016/j.plaphy.2019.01.018
- Phytohormones jasmonic acid, salicylic acid, gibberellins, and abscisic acid are key mediators of plant secondary metabolites vol.7, pp.3, 2017, https://doi.org/10.4103/wjtcm.wjtcm_20_21
- Overexpression of alfalfa SIMK promotes root hair growth, nodule clustering and shoot biomass production vol.19, pp.4, 2017, https://doi.org/10.1111/pbi.13503