DOI QR코드

DOI QR Code

Epigenetic Regulation of Axon Regeneration after Neural Injury

  • Shin, Jung Eun (The Research Institute of Basic Sciences, Seoul National University) ;
  • Cho, Yongcheol (Department of Life Sciences, Korea University)
  • Received : 2016.12.22
  • Accepted : 2017.01.23
  • Published : 2017.01.31

Abstract

When peripheral axons are damaged, neuronal injury signaling pathways induce transcriptional changes that support axon regeneration and consequent functional recovery. The recent development of bioinformatics techniques has allowed for the identification of many of the regeneration-associated genes that are regulated by neural injury, yet it remains unclear how global changes in transcriptome are coordinated. In this article, we review recent studies on the epigenetic mechanisms orchestrating changes in gene expression in response to nerve injury. We highlight the importance of epigenetic mechanisms in discriminating efficient axon regeneration in the peripheral nervous system and very limited axon regrowth in the central nervous system and discuss the therapeutic potential of targeting epigenetic regulators to improve neural recovery.

Keywords

References

  1. Abe, N., and Cavalli, V. (2008). Nerve injury signaling. Curr. Opin. Neurobiol. 18, 276-283. https://doi.org/10.1016/j.conb.2008.06.005
  2. Abe, N., Borson, S.H., Gambello, M.J., Wang, F., and Cavalli, V. (2010). Mammalian target of rapamycin (mTOR) activation increases axonal growth capacity of injured peripheral nerves. J. Biol. Chem. 285, 28034-28043. https://doi.org/10.1074/jbc.M110.125336
  3. Bareyre, F.M., Garzorz, N., Lang, C., Misgeld, T., Büning, H., and Kerschensteiner, M. (2011). In vivo imaging reveals a phase-specific role of STAT3 during central and peripheral nervous system axon regeneration. Proc. Natl. Acad. Sci. USA 108, 6282-6287. https://doi.org/10.1073/pnas.1015239108
  4. Ben-Tov Perry, R., Doron-Mandel, E., Iavnilovitch, E., Rishal, I., Dagan, S.Y., Tsoory, M., Coppola, G., McDonald, M.K., Gomes, C., Geschwind, D.H., et al. (2012). Subcellular knockout of importin ${\beta}1$ perturbs axonal retrograde signaling. Neuron 75, 294-305. https://doi.org/10.1016/j.neuron.2012.05.033
  5. Bode, A.G., and Dong, Z. (2004). Post-translational modification of p53 in tumorigenesis. Nat. Rev. Cancer. 4, 793-805 https://doi.org/10.1038/nrc1455
  6. Bomze, H.M., Bulsara, K.R., Iskandar, B.J., Caroni, P., and Skene, J.H. (2001). Spinal axon regeneration evoked by replacing two growth cone proteins in adult neurons. Nat. Neurosci. 4, 38-43. https://doi.org/10.1038/82881
  7. Bradke, F., Fawcett, J.W., and Spira, M.E. (2012). Assembly of a new growth cone after axotomy: the precursor to axon regeneration. Nat. Rev. Neurosci. 13, 183-193. https://doi.org/10.1038/nrn3176
  8. Cai, D., Qiu, J., Cao, Z., McAtee, M., Bregman, B.S., and Filbin, M.T. (2001). Neuronal cyclic AMP controls the developmental loss in ability of axons to regenerate. J. Neurosci. 21, 4731-4739. https://doi.org/10.1523/JNEUROSCI.21-13-04731.2001
  9. Chandran, V., Coppola, G., Nawabi, H., Omura, T., Versano, R., Huebner, E. a, Zhang, A., Costigan, M., Yekkirala, A., Barrett, L., et al. (2016). A systems-level analysis of the peripheral nerve intrinsic axonal growth program. Neuron 89, 956-970. https://doi.org/10.1016/j.neuron.2016.01.034
  10. Chen, M.S., Huber, A.B., van der Haar, M.E., Frank, M., Schnell, L., Spillmann, A.A., Christ, F., and Schwab, M.E. (2000). Nogo-A is a myelin-associated neurite outgrowth inhibitor and an antigen for monoclonal antibody IN-1. Nature 403, 434-439. https://doi.org/10.1038/35000219
  11. Chen, Z.-L., Yu, W.-M., and Strickland, S. (2007). Peripheral regeneration. Annu. Rev. Neurosci. 30, 209-233. https://doi.org/10.1146/annurev.neuro.30.051606.094337
  12. Cho, Y., and Cavalli, V. (2014). HDAC signaling in neuronal development and axon regeneration. Curr. Opin. Neurobiol. 27, 118-126.
  13. Cho, Y., Sloutsky, R., Naegle, K.M., and Cavalli, V. (2013). Injury-induced HDAC5 nuclear export is essential for axon regeneration. Cell 155, 894-908. https://doi.org/10.1016/j.cell.2013.10.004
  14. Cho, Y., Shin, J.E., Ewan, E.E., Oh, Y.M., Pita-Thomas, W., and Cavalli, V. (2015). Activating injury-responsive genes with hypoxia enhances axon regeneration through neuronal HIF-$1{\alpha}$. Neuron 88, 720-734. https://doi.org/10.1016/j.neuron.2015.09.050
  15. Coleman, M. (2005). Axon degeneration mechanisms: commonality amid diversity. Nat. Rev. Neurosci. 6, 889-898. https://doi.org/10.1038/nrn1788
  16. Coleman, M.P., and Freeman, M.R. (2010). Wallerian degeneration, wld(s), and nmnat. Annu. Rev. Neurosci. 33, 245-267. https://doi.org/10.1146/annurev-neuro-060909-153248
  17. Erturk, A., Hellal, F., Enes, J., and Bradke, F. (2007). Disorganized microtubules underlie the formation of retraction bulbs and the failure of axonal regeneration. J. Neurosci. 27, 9169-9180. https://doi.org/10.1523/JNEUROSCI.0612-07.2007
  18. Finelli, M.J., Wong, J.K., and Zou, H. (2013). Epigenetic regulation of sensory axon regeneration after spinal cord injury. J. Neurosci. 33, 19664-19676. https://doi.org/10.1523/JNEUROSCI.0589-13.2013
  19. Gao, Y., Deng, K., Hou, J., Bryson, J.B., Barco, A., Nikulina, E., Spencer, T., Mellado, W., Kandel, E.R., and Filbin, M.T. (2004). Activated CREB is sufficient to overcome inhibitors in myelin and promote spinal axon regeneration in vivo. Neuron 44, 609-621. https://doi.org/10.1016/j.neuron.2004.10.030
  20. Gaub, P., Tedeschi, a, Puttagunta, R., Nguyen, T., Schmandke, a, and Di Giovanni, S. (2010). HDAC inhibition promotes neuronal outgrowth and counteracts growth cone collapse through CBP/p300 and P/CAF-dependent p53 acetylation. Cell Death Differ. 17, 1392-1408. https://doi.org/10.1038/cdd.2009.216
  21. Gaub, P., Joshi, Y., Wuttke, A., Naumann, U., Schnichels, S., Heiduschka, P., and Di Giovanni, S. (2011). The histone acetyltransferase p300 promotes intrinsic axonal regeneration. Brain 134, 2134-2148. https://doi.org/10.1093/brain/awr142
  22. Geoffroy, C.G., Meves, J.M., and Zheng, B. (2016). The age factor in axonal repair after spinal cord injury: A focus on neuron-intrinsic mechanisms. Neurosci. Lett. doi.org/10.1016/j.neulet.2016.11.003
  23. Di Giovanni, S., Knights, C.D., Rao, M., Yakovlev, A., Beers, J., Catania, J., Avantaggiati, M.L., and Faden, A.I. (2006). The tumor suppressor protein p53 is required for neurite outgrowth and axon regeneration. EMBO J. 25, 4084-4096. https://doi.org/10.1038/sj.emboj.7601292
  24. Gong, L., Wu, J., Zhou, S., Wang, Y., Qin, J., Yu, B., Gu, X., and Yao, C. (2016). Global analysis of transcriptome in dorsal root ganglia following peripheral nerve injury in rats. Biochem. Biophys. Res. Commun. 478, 206-212. https://doi.org/10.1016/j.bbrc.2016.07.067
  25. Gordon, T., Tyreman, N., and Raji, M.A. (2011). The basis for diminished functional recovery after delayed peripheral nerve repair. J. Neurosci. 31, 5325-5334. https://doi.org/10.1523/JNEUROSCI.6156-10.2011
  26. Jones, P.A. (2012). Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat. Rev. Genet. 13, 484-492. https://doi.org/10.1038/nrg3230
  27. Kenney, a M., and Kocsis, J.D. (1998). Peripheral axotomy induces long-term c-Jun amino-terminal kinase-1 activation and activator protein-1 binding activity by c-Jun and junD in adult rat dorsal root ganglia In vivo. J. Neurosci. 18, 1318-1328. https://doi.org/10.1523/JNEUROSCI.18-04-01318.1998
  28. Kobayashi, J., Mackinnon, S.E., Watanabe, O., Ball, D.J., Gu, X.M., Hunter, D.A., and Kuzon, Jr, W.M. (1997). The effect of duration of muscle denervation on functional recovery. Muscle Nerve 20, 858-866. https://doi.org/10.1002/(SICI)1097-4598(199707)20:7<858::AID-MUS10>3.0.CO;2-O
  29. Lee, K.K., and Workman, J.L. (2007). Histone acetyltransferase complexes: one size doesn't fit all. Nat. Rev. Mol. Cell Biol. 8, 284-295. https://doi.org/10.1038/nrm2145
  30. Li, S., Xue, C., Yuan, Y., Zhang, R., Wang, Y., Wang, Y., Yu, B., Liu, J., Ding, F., Yang, Y., et al. (2015). The transcriptional landscape of dorsal root ganglia after sciatic nerve transection. Sci. Rep. 5, 16888. https://doi.org/10.1038/srep16888
  31. Lindner, R., Puttagunta, R., Nguyen, T., and Di Giovanni, S. (2014). DNA methylation temporal profiling following peripheral versus central nervous system axotomy. Sci. Data 1, 140038. https://doi.org/10.1038/sdata.2014.38
  32. Liu, K., Tedeschi, A., Park, K.K., and He, Z. (2011). Neuronal intrinsic mechanisms of axon regeneration. Annu. Rev. Neurosci. 34, 131-152. https://doi.org/10.1146/annurev-neuro-061010-113723
  33. Ma, T.C., and Willis, D.E. (2015). What makes a RAG regeneration associated? Front. Mol. Neurosci. 8, 43.
  34. Magill, C.K., Tong, A., Kawamura, D., Hayashi, A., Hunter, D. a, Parsadanian, A., Mackinnon, S.E., and Myckatyn, T.M. (2007). Reinnervation of the tibialis anterior following sciatic nerve crush injury: a confocal microscopic study in transgenic mice. Exp. Neurol. 207, 64-74. https://doi.org/10.1016/j.expneurol.2007.05.028
  35. McKeon, R.J., Schreiber, R.C., Rudge, J.S., and Silver, J. (1991). Reduction of neurite outgrowth in a model of glial scarring following CNS injury is correlated with. J. Neurosci. 11, 3398-3411. https://doi.org/10.1523/JNEUROSCI.11-11-03398.1991
  36. Michaelevski, I., Segal-Ruder, Y., Rozenbaum, M., Medzihradszky, K.F., Shalem, O., Coppola, G., Horn-Saban, S., Ben-Yaakov, K., Dagan, S.Y., Rishal, I., et al. (2010). Signaling to transcription networks in the neuronal retrograde injury response. Sci. Signal. 3, ra53.
  37. Mukhopadhyay, G., Doherty, P., Walsh, F.S., Crocker, P.R., and Filbin, M.T. (1994). A novel role for myelin-associated glycoprotein as an inhibitor of axonal regeneration. Neuron 13, 757-767. https://doi.org/10.1016/0896-6273(94)90042-6
  38. Neumann, S., and Woolf, C.J. (1999). Regeneration of dorsal column fibers into and beyond the lesion site following adult spinal cord injury. Neuron 23, 83-91. https://doi.org/10.1016/S0896-6273(00)80755-2
  39. Neumann, S., Bradke, F., Tessier-Lavigne, M., and Basbaum, A.I. (2002). Regeneration of sensory axons within the injured spinal cord induced by intraganglionic cAMP elevation. Neuron 34, 885-893. https://doi.org/10.1016/S0896-6273(02)00702-X
  40. Pan, Y.A., Misgeld, T., Lichtman, J.W., and Sanes, J.R. (2003). Effects of neurotoxic and neuroprotective agents on peripheral nerve regeneration assayed by time-lapse imaging in vivo. J. Neurosci. 23, 11479-11488. https://doi.org/10.1523/JNEUROSCI.23-36-11479.2003
  41. Park, K.K., Liu, K., Hu, Y., Smith, P.D., Wang, C., Cai, B., Xu, B., Connolly, L., Kramvis, I., Sahin, M., et al. (2008). Promoting axon regeneration in the adult CNS by modulation of the PTEN/mTOR pathway. Science 322, 963-966. https://doi.org/10.1126/science.1161566
  42. Puttagunta, R., Tedeschi, A., Soria, M.G., Hervera, A., Lindner, R., Rathore, K.I., Gaub, P., Joshi, Y., Nguyen, T., Schmandke, A., et al. (2014). PCAF-dependent epigenetic changes promote axonal regeneration in the central nervous system. Nat. Commun. 5, 3527. https://doi.org/10.1038/ncomms4527
  43. Qiu, J., Cai, D., Dai, H., Mcatee, M., Hoffman, P.N., Bregman, B.S., and Filbin, M.T. (2002). Spinal axon regeneration induced by elevation of cyclic AMP. Neuron 34, 895-903. https://doi.org/10.1016/S0896-6273(02)00730-4
  44. Raivich, G., Bohatschek, M., Da Costa, C., Iwata, O., Galiano, M., Hristova, M., Nateri, A.S., Makwana, M., Riera-Sans, L., Wolfer, D.P., et al. (2004). The AP-1 transcription factor c-Jun is required for efficient axonal regeneration. Neuron 43, 57-67. https://doi.org/10.1016/j.neuron.2004.06.005
  45. Rishal, I., and Fainzilber, M. (2014). Axon-soma communication in neuronal injury. Nat. Rev. Neurosci. 15, 32-42. https://doi.org/10.1038/nrn3609
  46. Rivieccio, M.A., Brochier, C., Willis, D.E., Walker, B.A., D'Annibale, M.A., McLaughlin, K., Siddiq, A., Kozikowski, A.P., Jaffrey, S.R., Twiss, J.L., et al. (2009). HDAC6 is a target for protection and regeneration following injury in the nervous system. Proc. Natl. Acad. Sci. USA 106, 19599-19604. https://doi.org/10.1073/pnas.0907935106
  47. Shin, J.E., Cho, Y., Beirowski, B., Milbrandt, J., Cavalli, V., and DiAntonio, A. (2012). Dual leucine zipper kinase is required for retrograde injury signaling and axonal regeneration. Neuron 74, 1015-1022. https://doi.org/10.1016/j.neuron.2012.04.028
  48. Smith, D.S., and Skene, J.H. (1997). A transcription-dependent switch controls competence of adult neurons for distinct modes of axon growth. J. Neurosci. 17, 646-658. https://doi.org/10.1523/JNEUROSCI.17-02-00646.1997
  49. Smith, P.D., Sun, F., Park, K.K., Cai, B., Wang, C., Kuwako, K., Martinez-Carrasco, I., Connolly, L., and He, Z. (2009). SOCS3 deletion promotes optic nerve regeneration in vivo. Neuron 64, 617-623. https://doi.org/10.1016/j.neuron.2009.11.021
  50. Stoll, G., Jander, S., and Myers, R.R. (2002). Degeneration and regeneration of the peripheral nervous system: from Augustus Waller's observations to neuroinflammation. J. Peripher. Nerv. Syst. JPNS 7, 13-27. https://doi.org/10.1046/j.1529-8027.2002.02002.x
  51. Tedeschi, A., Nguyen, T., Puttagunta, R., Gaub, P., and Di Giovanni, S. (2009). A p53-CBP/p300 transcription module is required for GAP-43 expression, axon outgrowth, and regeneration. Cell Death Differ. 16, 543-554. https://doi.org/10.1038/cdd.2008.175
  52. Tetzlaff, W., Alexander, S.W., Miller, F.D., and Bisby, M.A. (1991). Response of facial and rubrospinal neurons to axotomy: changes in mRNA expression for cytoskeletal proteins and GAP-43. J. Neurosci. 11, 2528-2544. https://doi.org/10.1523/JNEUROSCI.11-08-02528.1991
  53. De Vos, K.J., Grierson, A.J., Ackerley, S., and Miller, C.C.J. (2008). Role of axonal transport in neurodegenerative diseases. Annu. Rev. Neurosci. 31, 151-173. https://doi.org/10.1146/annurev.neuro.31.061307.090711
  54. Wang, K.C. (2002). Oligodendrocyte-myelin glycoprotein is a Nogo receptor ligand that inhibits neurite outgrowth. 417, 941-944. https://doi.org/10.1038/nature00867
  55. Wang, Q.J. (2006). PKD at the crossroads of DAG and PKC signaling. Trends Pharmacol. Sci. 27, 317-323. https://doi.org/10.1016/j.tips.2006.04.003
  56. Wang, M.S., Davis, A. a, Culver, D.G., and Glass, J.D. (2002). WldS mice are resistant to paclitaxel (taxol) neuropathy. Ann. Neurol. 52, 442-447. https://doi.org/10.1002/ana.10300
  57. Yiu, G., and He, Z. (2006). Glial inhibition of CNS axon regeneration. Nat. Rev. Neurosci. 7, 617-627. https://doi.org/10.1038/nrn1956

Cited by

  1. Deep Sequencing Reveals the Significant Involvement of cAMP-Related Signaling Pathways Following Sciatic Nerve Crush vol.42, pp.12, 2017, https://doi.org/10.1007/s11064-017-2409-3
  2. in mouse sciatic nerve model vol.34, pp.4, 2017, https://doi.org/10.1080/08990220.2017.1421160
  3. HSP90 is a chaperone for DLK and is required for axon injury signaling vol.115, pp.42, 2018, https://doi.org/10.1073/pnas.1805351115
  4. A Conditioning Sciatic Nerve Lesion Triggers a Pro-regenerative State in Primary Sensory Neurons Also of Dorsal Root Ganglia Non-associated With the Damaged Nerve vol.13, pp.1662-5102, 2019, https://doi.org/10.3389/fncel.2019.00011
  5. Immunohistochemical analysis of histone H3 acetylation in the trigeminal root entry zone in an animal model of trigeminal neuralgia vol.131, pp.3, 2017, https://doi.org/10.3171/2018.5.jns172948
  6. Immunohistochemical analysis of histone H3 acetylation in the trigeminal root entry zone in an animal model of trigeminal neuralgia vol.131, pp.3, 2017, https://doi.org/10.3171/2018.5.jns172948
  7. The stem cell marker Prom1 promotes axon regeneration by down-regulating cholesterol synthesis via Smad signaling vol.117, pp.27, 2020, https://doi.org/10.1073/pnas.1920829117
  8. Signals Orchestrating Peripheral Nerve Repair vol.9, pp.8, 2017, https://doi.org/10.3390/cells9081768
  9. Teaching Epigenetic Regulation of Gene Expression Is Critical in 21st-Century Science Education: Key Concepts & Teaching Strategies vol.82, pp.6, 2017, https://doi.org/10.1525/abt.2020.82.6.372
  10. Regulation of Social Stress and Neural Degeneration by Activity-Regulated Genes and Epigenetic Mechanisms in Dopaminergic Neurons vol.57, pp.11, 2017, https://doi.org/10.1007/s12035-020-02037-7
  11. MicroRNA-135a-5p Promotes the Functional Recovery of Spinal Cord Injury by Targeting SP1 and ROCK vol.22, pp.None, 2017, https://doi.org/10.1016/j.omtn.2020.08.035
  12. Interaction between Schwann cells and other cells during repair of peripheral nerve injury vol.16, pp.1, 2017, https://doi.org/10.4103/1673-5374.286956
  13. Cyclic Stretch of Either PNS or CNS Located Nerves Can Stimulate Neurite Outgrowth vol.10, pp.1, 2021, https://doi.org/10.3390/cells10010032
  14. Experimental Model Systems for Understanding Human Axonal Injury Responses vol.22, pp.2, 2017, https://doi.org/10.3390/ijms22020474
  15. The intrinsic axon regenerative properties of mature neurons after injury vol.53, pp.1, 2017, https://doi.org/10.1093/abbs/gmaa148
  16. Potential roles of stem cell marker genes in axon regeneration vol.53, pp.1, 2017, https://doi.org/10.1038/s12276-020-00553-z
  17. In Vivo Gene Delivery of STC2 Promotes Axon Regeneration in Sciatic Nerves vol.58, pp.2, 2017, https://doi.org/10.1007/s12035-020-02155-2
  18. Comparative gene expression profiling reveals the mechanisms of axon regeneration vol.288, pp.16, 2021, https://doi.org/10.1111/febs.15646
  19. Traditional application and modern pharmacological research of Eucommia ulmoides Oliv. vol.16, pp.1, 2017, https://doi.org/10.1186/s13020-021-00482-7