References
- D. Tahmoush and J. Silvious, "Radar micro-Doppler for long range front-view gait recognition," in Proc. IEEE 3rd Int. Conf. Biometrics, Theory, Appl. Syst., Washington, DC, USA, Sep. 28-30, 2009, pp. 1-6.
- van Dorp and F. C. A. Groen, "Human walking estimation with radar," Proc. Inst. Elect. Eng. Radar, Sonar Navig., vol. 150, no. 5, pp. 356-365, Oct. 2003. https://doi.org/10.1049/ip-rsn:20030568
- V. C. Chen, F. Li, S.-S. Ho, and H. Wechsler, "Micro-Doppler effect in radar: Phenomenon, model, and simulation study," IEEE Trans. Aerosp. Electron. Syst., vol. 42, no. 1, pp. 2-21, Jan. 2006. https://doi.org/10.1109/TAES.2006.1603402
- A. G. Stove and S. R. Sykes, "A Doppler-based automatic target classifier for a battlefield surveillance radar," in Proc. IEEE Radar Conf., Oct. 2002, pp. 419-423.
- Jeehyun Lee and Chong Hyun Lee, "Classification of moving object using Micro-Doppler signals", in Proc. IEEE/IEIE 1st Int. Conf. on Consumer Electronics(ICCE) Asia, Seoul, Korea, Oct. 26-28, 2016, Poster Presentation.
- Y. Kim and H. Ling, "Human activity classification based on micro-Doppler signatures using a support vector machine," IEEE Trans. Geosci.Remote Sens., vol. 47, no. 5, pp. 1328-1337, May 2009. https://doi.org/10.1109/TGRS.2009.2012849
- J. Rios and Y. Kim, "Application of linear predictive coding for human activity classification based on micro-Doppler signatures," IEEE Geosci.Remote Sens. Lett., vol. 11, no. 10, pp. 1831-1834, Oct. 2014. https://doi.org/10.1109/LGRS.2014.2311819
- D. Fairchild and R. Narayanan, "Classification of human motions using empirical mode decomposition of human micro-Doppler signatures," IET Radar, Sonar, Navig., vol. 8, no. 5, pp. 425-434, Jun. 2014. https://doi.org/10.1049/iet-rsn.2013.0165
- J. Li, S. Phung, F. Tivive, and A. Bouzerdoum, "Automatic classification of human motions using Doppler radar," in Proc. IEEE IJCNN, Brisbane, Qld., Australia, Jun. 10-15, 2012, pp. 1-6.
- L. Deng and D. Yu, Deep Learning Methods and Applications, now Publishers Inc., 2014.
- D. E. Rumelhart, G. E. Hinton, and R. J. Williams, "Learning internal representations by error propagation," Parallel Distributed Processing: Explorations in the Microstructure of Cognition, D. E. Rumelhart and J. L McClelland, eds, vol. I, pp 318-362, MIT, Cambridge, 1986.
- Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel, "Backpropagation applied to handwritten zip code recognition," Neural Computation, vol. 1, pp. 541- 551, 1989. https://doi.org/10.1162/neco.1989.1.4.541
- Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient based learning applied to document recognition," Proceedings of the IEEE, vol. 86, pp. 2278-2324, 1998. https://doi.org/10.1109/5.726791
- Geoffrey E. Hinton and Simon Osindero, "A fast learning algorithm for deep belief nets," Neural Computation, vol. 18, pp. 1527-1554, 2006. https://doi.org/10.1162/neco.2006.18.7.1527
- Alex Krizhevsky, Ilya Sutskever, and Geoff Hinton, "Imagenet classification with deep convolutional neural networks," Advances in Neural Information Processing Systems, 25, pp. 1106-1114, 2012.
- Ross B. Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik, "Rich feature hierarchies for accurate object detection and semantic segmentation," CVPR 2014, IEEE Conference on, 2014.
- Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich, "Going Deeper with Convolutions," CoRR, 2014.
- Youngwook Kim and Taesup Moon, "Human Detection and Activity Classification Based on Micro-Doppler Signatures Using Deep Convolutional Neural Networks," IEEE Geoscience and Remote Sensing Letters, vol. 13, no. 1, Jan 2016.