DOI QR코드

DOI QR Code

Detection of Rotation in Jump Rope using 6-axis Accelerometer Gyro Sensor

6축 가속도 자이로 센서를 이용한 줄넘기 회전운동 검출

  • Kim, Wanwoo (Department of Electronic Engineering, Dong-eui University) ;
  • Heo, Gyeongyong (Department of Electronic Engineering, Dong-eui University)
  • Received : 2016.10.07
  • Accepted : 2016.11.09
  • Published : 2017.02.28

Abstract

Jump rope has two motions. It starts as hand motion and ends as jump motion. Therefore, two motions should be considered together to detect rotations accurately. But previous researches only consider one of the two motions as in push-up, sit-up, lift dumbbells etc, which results in inaccurate detection of rotations. In this paper, detection of rotation in jump rope using two motions through 6-axis accelerometer gyro sensor is proposed. Jump motion is detected using accelerometer sensor and hand motion is detected using gyro sensor. Also start point and end point of jump rope is detected using magnitude and standard deviation of accelerometer and gyro sensor values. The count of rotation is detected using y-axis of gyro sensor value. Y-axis of gyro sensor value indicate hand motion of jump rope motion. The usefulness of the proposed method is confirmed through experimental results.

줄넘기는 줄을 돌리는 손동작과 뛰어오르는 동작이 결합된 운동으로 정확한 카운트를 위해서는 두 동작을 함께 고려해야 한다. 이전의 연구들에서는 단순 반복적인 운동인 윗몸일으키기, 팔굽혀펴기, 아령 운동과 함께 치부하여 하나의 동작만을 체크하여 카운트 하였다. 이것은 실제 줄넘기 동작과는 차이가 있으며 두 동작 중 하나의 동작만을 하고 있다면 확인해내지 못하는 문제가 있다. 본 논문에서는 6축 가속도 자이로 센서를 이용하여 두 동작을 모두 확인하고 카운트하는 방법을 제안한다. 가속도 센서를 이용하여 뛰어오르는 동작을 확인하며 자이로 센서를 이용하여 손동작을 확인한다. 이때 확인되는 값의 파형을 이용하여 줄넘기 횟수를 카운트하게 된다. 제안하는 방법은 실제 실험을 통하여 카운트 방법의 성능을 확인할 수 있다.

Keywords

References

  1. I. Korhonen, J. Parkka, M. V. Gils, "Health monitoring in the home of the future," IEEE Engineering in medicine and biology magazine, vol. 22, pp. 66-73, July 2003.
  2. K. Lorincz, B. Chen, G. W. Challen, A. R. Chowdhury, S. Patel, P. Bonato & M. Welsh, "Mercury: a wearable sensor network platform for high-fidelity motion analysis," in SenSys, vol. 9, pp. 183-196, Nov. 2009.
  3. A. Pantelopoulos, N. G. Bourbakis, "A survey on wearable sensor-based systems for health monitoring and prognosis," IEEE Transactions on Systems, Man, and Cybernetics, Part C, vol. 40, pp. 1-12, Jan. 2010. https://doi.org/10.1109/TSMCB.2010.2051351
  4. R. Paradiso, G. Loriga, N. Taccini, "A wearable health care system based on knitted integrated sensors," IEEE Transactions on Information Technology in Biomedicine, vol. 9, pp. 337-344, Sept. 2005. https://doi.org/10.1109/TITB.2005.854512
  5. D. O. Choi, "Development of u-Healthcare Agent System using of 3-Axis Accelerometer Sensor," Journal of the Korean contents, vol. 10, no. 4, pp. 98-105, Apr. 2010.
  6. J, H. Jo, "Self-Powered Jump-Rope with Embedded Bluetooth Link," in proceeding of the HCI Society of Korea, pp. 45-48, Feb. 2014.
  7. J. Y. Lim, "Methode of Activity Pattern Analysis in the Life Care System," Jounal of the Korea Entertainment Industry Association, vol. 5, no. 2, pp. 115-118, Nov. 2011.
  8. S. Y. Park, "Navigation based Motion Counting Algorithm for a Wearable Smart Device," Journal of Institute of Control Robotics and Systems, vol. 21, pp. 547-552, Jun. 2015. https://doi.org/10.5302/J.ICROS.2015.15.9030
  9. B. J. Mortazavi, M. Pourhomayoun, G. Alsheikh, N. Alshurafa, S. I. Lee, "Determining the single best axis for exercise repetition recognition and counting on smartwatches," in 2014 11th International Conference on Wearable and Implantable Body Sensor Networks pp. 33-38, Jun. 2014.
  10. D. Morris, T. S. Saponas, A. Guillory, I. Kelner, "RecoFit: using a wearable sensor to find, recognize, and count repetitive exercises," in Proceedings of the 32nd annual ACM conference on Human factors in computing systems, pp. 3225-3234, Apr. 2014.