DOI QR코드

DOI QR Code

Implementation of Highly Efficient GMR Color Filter using Asymmetric Si3N4 Gratings

비대칭 Si3N4 격자를 사용한 고효율 GMR 컬러 필터의 구현

  • 호광춘 (한성대학교 정보통신공학과)
  • Received : 2016.02.24
  • Accepted : 2017.02.03
  • Published : 2017.02.28

Abstract

In this paper, a highly efficient GMR(guided-mode resonant) color filter is proposed and implemented. The GMR color filter consists of $Si_3N_4/air$ layers containing complementary fixed and mobile gratings. The device is designed using RETT(rigorous equivalent transmission-line theory) and a grating structure operating in subwavelength. The numerical result reveals that the color filter has a tuning capability of about 35 nm over the $0.45{\mu}m{\sim}0.55{\mu}m$ range for blue-green color and across $0.6{\mu}m{\sim}0.7{\mu}m$ range for red color. Furthermore, The color filters have a spectral bandwidth of about 8 nm with efficiencies of 99%, 98%, and 99% at the center wavelength of blue, green, and red color, respectively, and these are higher efficiencies than reported in the literature previously.

본 논문에서는 높은 효율의 GMR(guided-mode resonant) 컬러 필터를 제안하고 구현하였다. GMR 컬러 필터는 서로 보완적인 고정 격자와 이동 격자가 포함한 $Si_3N_4/air$ 층으로 구성하였다. 제안한 소자는 정확한 등가 전송선로 이론(RETT)에 기초한 수치 해석과 서브 파장 대역에서 동작하는 격자구조를 사용하여 설계하였다. 수치해석 결과, GMR 컬러 필터는 $0.45{\mu}m{\sim}0.55{\mu}m$ 범위에서 blue-green 컬러에 대하여 그리고 $0.6{\mu}m{\sim}0.7{\mu}m$ 범위에서 red 컬러에 대하여 약 35 nm의 동조특성을 보였다. 또한, 컬러 필터는 blue, green 그리고 red 컬러의 중심 주파수에서 각각 99%, 98%, 99%의 효율을 가지고 약 8 nm의 대역폭을 나타내었으며, 앞선 논문들에서 보고된 내용보다 더 높은 효율을 보여주었다.

Keywords

References

  1. R. W. Sabnis, "Color filter technology for liquid crystal displays," Displays, Vol. 20, No. 3, pp. 119-129, 1999. https://doi.org/10.1016/S0141-9382(99)00013-X
  2. Y. T. Yoon, H. S. Lee, S. S. Lee, S. H. Kim, J. D. Park, and K. D. Lee, "Color filter incorporating a subwavelength patterned grating in poly silicon," Opt. Express, Vol. 16, No. 4, pp. 2374-2380, 2008. DOI: https://doi.org/10.1364/OE.16.002374
  3. Y. Kanamori, M. Shimono, and K. Hane, "Fabrication of transmission color filters using subwavelength gratings on quartz substrate," IEEE Photon. Technol. Lett., Vol. 20, pp. 2126-2128, 2006. DOI: https://doi.org/10.1109/LPT.2006.883208
  4. S. S. Wang and R. Magnusson, "Theory and applications of guided-mode resonance filters," Appl. Opt. Vol. 32, No. 14, pp. 2606-2613, 1993. DOI: https://doi.org/10.1364/AO.32.002606
  5. R. Magnusson and Y. Ding, "MEMS tunable resonant leaky mode filters," IEEE Photon. Technol. Lett., Vol. 18, No. 14, pp. 1479-1481, 2006. DOI: https://doi.org/10.1109/LPT.2006.877578
  6. M. J. Madou, Fundamentals of Microfabrication: The Science of Miniaturization, 2nd ed. (CRC press, 2002).
  7. W. Shu, M. F. Yanik, O. Solgaard, and S. Fan, "Displacement-sensitive photonic crystal structures based on guided resonances in photonic crystal slabs," Appl. Phys. Lett., Vol. 82, pp. 1999-2001, 2003. DOI: https://doi.org/10.1063/1.1563739
  8. D. W. Carr, J. P. Sullivan, and T. A. Friedman, "Laterally deformable nanomechanical zeroth-order gratings: anomalous diffraction studied by rigorous coupled-wave theory," Opt. Lett., Vol. 28, pp. 1636-1638, 2003. DOI: https://doi.org/10.1364/OL.28.001636
  9. Y. Kanamori, T. Kitani, and K. Hane, "Control of guided resonance in a photonic crystal slab using microelectromechanical actuators," Appl. Phys. Lett., Vol. 90, pp. 031911, 2007. DOI: https://doi.org/10.1063/1.2431452
  10. K. C. Ho, "Diffraction Analysis of Multi-layered Grating Structures using Rigorous Equivalent Transmission-Line Theory," The J. of IIBC, Vol. 15, No. 1, pp. 261-267, 2015. DOI: https://doi.org/10.7236/JIIBC.2015.15.1.261
  11. R. Magnusson and M. Shokooh-Saremi, "Widely tunable guided-mode resonance nanoelectromechanical RGB pixels," Opt. Express Vol. 15, No. 17, pp. 10903-10910, 2007. DOI: https://doi.org/10.1364/OE.15.010903