DOI QR코드

DOI QR Code

A Study on Optimum Subband Filter Bank Design Using Vector Quantizer

벡터 양자화기를 사용한 최적의 부대역 필터 뱅크 구현에 관한 연구

  • Jee, Innho (Dept. of Computer and Information Communications Engineering, Hongik University)
  • 지인호 (홍익대학교 컴퓨터정보통신공학과)
  • Received : 2016.12.22
  • Accepted : 2017.02.03
  • Published : 2017.02.28

Abstract

This paper provides a new approach for modeling of vector quantizer(VQ) followed by analysis and design of subband codecs with imbedded VQ's. We compute the mean squared reconstruction error(MSE) which depend on N the number of entries in each codebook, k the length of each codeword, and on the filter bank(FB) coefficients in subband codecs. We show that the optimum M-band filter bank structure in presence of pdf-optimized vector quantizer can be designed by a suitable choice of equivalent scalar quantizer parameters. Specific design examples have been developed for two different classes of filter banks, paraunitary and the biorthogonal FB and the 2 channel case. These theoretical results are confirmed by Monte Carlo simulation.

이 논문은 벡터 양자기가 포함된 부대역 코덱의 분석과 설계에서 벡터 양자기를 모델링하는 새로운 방법을 제시해준다. 우리는 각 코드북의 시작점들의 수(N), 각 코드워드의 길이(k), 필터 대역 계수들에 의존하는 부대역 코덱 시스템의 입력과 출력의 평균자승 회복 오차(MSE)를 계산한다. 본 논문은 확률밀도함수로 최적화된 벡터양자기가 존재하는 최적의 M밴드 필터 뱅크 구조는 등가의 스칼라 양자기의 변수들의 적절한 선택으로 구현될 수 있음을 보였다. 특정한 구현 예를 두 개의 다른 필터뱅크 구조인 Paraunitary 필터 뱅크와 Biorthogonal 필터 뱅크를 2채널 경우에 개발하였다. 이 이론적인 결과들은 확장의 Monte Carlo 시뮬레이션으로 확인되었다.

Keywords

References

  1. P. P. Vaidyanathan, Multirate Systems and Filter Banks, Prentice Hall, 1993
  2. M. Vetterli, "Multi-dimensional subband coding: Some theory and algorithm," Signal Processing, vol. 6, pp. 97-112, Apr. 1984. DOI : https://doi.org/10.1016/0165-1684(84)90012-4
  3. H. Gharavi, "Subband coding algorithm for video application: Videophone to HDTV conferencing," IEEE Trans. Circuit Syst. Video Techno., vol. 1, No. 2, pp. 174-183, June, 1991. https://doi.org/10.1109/76.97973
  4. P. H. Westering, D. E. Boekee, J. Biemond, "Subband coding of image using vector quantization," IEEE Trans. on Comm., vol. 36, No. 6,, June 1991.
  5. Y. Linde, A. Buzo, and R. M. Gray, "A algorithm for vector quantizer design," in IEEE Trans. on Comm., vol. COM-28, No. 1, pp. 84-95, Jan. 1980.
  6. R. A. Haddad and K. Park, "Modeling, analysis and optimum design of quantized M-band filter banks," IEEE Trans., Signal Processing, vol. 43, No. 11, pp. 2540-2549, Nov. 1995. https://doi.org/10.1109/78.482105
  7. Innho Jee and R. A. Haddad, "Optimum design of vector-quantized subband codecs", IEEE Trans. on Signal Processing, Vol. 46, No. 8, pp. 2239-2243, Aug. 1998. https://doi.org/10.1109/78.705449
  8. A. Gersho, "Asymptotically optimal block quantization," in IEEE Trans. on Inf. Theory, vol. IY-25, No. 4, pp. 373-380, July 1979.
  9. W. A. Pearlman and A. Said, Digital Signal Compression : Principle and Practice, Cambridge University Press. 2013.
  10. Vladimir Cuperman, "Joint bit allocation and dimensional optimization for vector transform quantization." in IEEE Trans. on Inf. Theory, vol. 39, No. 1, pp. 302-305, Jan. 1993. https://doi.org/10.1109/18.179379
  11. A. N. Akansu and R. A. Haddad, Multi-resolution Signal Decomposition: Transform, Subbands, and Wavelets, Academic Press, 1992.
  12. J. Chang and C. Lin, "An iterative data-flow optimal scheduling algorithm based on genetic algorithm for high performance multiprocessor," The Journal of the Institute of Internet, Broadcasting and Communication(IIIBC), vol. 15, No. 6, pp. 115-121, Dec. 2015. https://doi.org/10.7236/JIIBC.2015.15.6.115
  13. C. Lee, J. Lee, K. Jung and J. Lee, "Wavelet transform based image registration using MCDT method for multi-image," The International Journal of Internet, Broadcasting and Communication(IJIBC), vol. 7, No.1, pp. 36-41, Feb. 2015.