DOI QR코드

DOI QR Code

Anti-Melanogenic Effect of Oenothera laciniata Methanol Extract in Melan-a Cells

  • Kim, Su Eun (Department of Public Health, Graduate School, Keimyung University) ;
  • Lee, Chae Myoung (Department of Beauty Coordination, Keimyung College University) ;
  • Kim, Young Chul (Department of Public Health, Graduate School, Keimyung University)
  • Received : 2016.11.23
  • Accepted : 2016.12.13
  • Published : 2017.01.15

Abstract

We evaluated the antioxidant activity and anti-melanogenic effects of Oenothera laciniata methanol extract (OLME) in vitro by using melan-a cells. The total polyphenol and flavonoid content of OLME was 66.3 and 19.0 mg/g, respectively. The electron-donating ability, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical-scavenging activity, and superoxide dismutase (SOD)-like activity of OLME ($500{\mu}g/mL$) were 94.5%, 95.6%, and 63.6%, respectively. OLME and arbutin treatment at $50{\mu}g/mL$ significantly decreased melanin content by 35.5% and 14.2%, respectively, compared to control (p < 0.05). OLME and arbutin treatment at $50{\mu}g/mL$ significantly inhibited intra-cellular tyrosinase activity by 22.6% and 12.6%, respectively, compared to control (p < 0.05). OLME ($50{\mu}g/mL$) significantly decreased tyrosinase, tyrosinase-related protein-1 (TRP-1), TRP-2, and microphthalmia-associated transcription factor-M (MITF-M) mRNA expression by 57.1%, 67.3%, 99.0%, and 77.0%, respectively, compared to control (p < 0.05). Arbutin ($50{\mu}g/mL$) significantly decreased tyrosinase, TRP-1, and TRP-2 mRNA expression by 24.2%, 42.9%, and 48.5%, respectively, compared to control (p < 0.05). However, arbutin ($50{\mu}g/mL$) did not affect MITF-M mRNA expression. Taken together, OLME showed a good antioxidant activity and anti-melanogenic effect in melan-a cells that was superior to that of arbutin, a well-known skin-whitening agent. The potential mechanism underlying the anti-melanogenic effect of OLME was inhibition of tyrosinase activity and down-regulation of tyrosinase, TRP-1, TRP-2, and MITF-M mRNA expression.

Keywords

References

  1. Kang, H.Y., Yoon, T.J. and Lee, G.J. (2011) Whitening effects of marine Pesudomonas extract. Ann. Dermatol., 23, 144-149. https://doi.org/10.5021/ad.2011.23.2.144
  2. Hearing, V.J. (2005) Biogenesis of pigment granules: a sensitive way to regulatemelanocyte function. J. Dermatol. Sci., 37, 3-14. https://doi.org/10.1016/j.jdermsci.2004.08.014
  3. Huang, Y.H., Lee, T.H., Chan, K.J., Hsu, F.L., Wu, Y.C. and Lee, M.H. (2008) Anemonin is a natural bioactive compound that can regulate tyrosinase-related proteins and mRNA in human melanocytes. J. Dermatol. Sci., 49, 115-123. https://doi.org/10.1016/j.jdermsci.2007.07.008
  4. Sturm, R.A., Teasdale, R.D. and Box, N.F. (2001) Human pigmentation genes: identification, structure and consequences of polymorphic variation. Gene, 277, 49-62. https://doi.org/10.1016/S0378-1119(01)00694-1
  5. Mallick, S., Singh, S.K., Sarkar, C., Saha, B. and Bhadra, R. (2005) Human placental lipid induces melanogenesis by increasing the expression of tyrosinase and itsrelated proteins in vitro. Pigment Cell Res., 18, 25-33. https://doi.org/10.1111/j.1600-0749.2004.00193.x
  6. Udono, T., Yasumoto, K., Takeda, K., Amae, S., Watanabe, K., Saito, H., Fuse, N., Tachibana, M., Takahashi, K., Tamai, M. and Shibahara, S. (2000) Structural organization of the human microphthalmia-associated transcription factor gene containingfour alternative promoters. Biochim. Biophys. Acta, 1491, 205-219. https://doi.org/10.1016/S0167-4781(00)00051-8
  7. Fuse, N., Yasumoto, K., Suzuki, H., Takahashi, K. and Shibahara, S. (1996) Identificationof a melanocyte-type promoter of the microphthalmia-associated transcription factor gene. Biochem. Biophys. Res. Commun., 219, 702-707. https://doi.org/10.1006/bbrc.1996.0298
  8. Draelos, Z.D. (2007) Skin lightening preparations and the hydroquinone controversy. Dermatol. Ther., 20, 308-313. https://doi.org/10.1111/j.1529-8019.2007.00144.x
  9. Lim, J.T. (1999) Treatment of melasma using kojic acid in a gel containing hydroquinone and glycolic acid. Dermatol. Surg., 25, 282-284. https://doi.org/10.1046/j.1524-4725.1999.08236.x
  10. Varro, E.T., Lynn, R.B. and James, E.R. (1988) Pharmacognosy (9th edition), Lea and Febriger, Philadelphia, p. 471.
  11. Hatano, T., Yasuhara, T., Fukuda, T., Noro, T. and Okuda, T. (1989) Phenolic constituents of licorice. II: Structures of licopyranocoumarin, licoarylcoumarin and glisoflavone, and inhibitory effects of licorice phenolics on xanthine oxidase. Chem. Pharm. Bull., 37, 3005-3009. https://doi.org/10.1248/cpb.37.3005
  12. Kim, J.Y., Lee, J.A. and Park, S.Y. (2007) Antibacterial activities of Oenothera laciniata extracts. J. Korean Soc. Food Sci. Nutr., 36, 255-259. https://doi.org/10.3746/jkfn.2007.36.3.255
  13. Lee, J.A., Kim, J.Y., Yoon, W.J., Oh, D.J., Jung, Y.H., Lee, W.J. and Park, S.Y. (2006) Biological activities of Oenothera laciniata extracts (Onagraceae, Myrtales). Korean J. Food Sci. Technol., 38, 810-815.
  14. Kim, S.E., Lee, C.M. and Kim Y.C. (2016) Anti-wrinkle efficacy of Oenothera laciniata methanol extract in human dermal fibroblasts. J. Invest. Cosmetol., 12, 197-203. https://doi.org/10.15810/jic.2016.12.3.001
  15. Folin, O. and Denis, W. (1912) On phosphotungstic-phosphomolybdic compounds as color reagents. J. Biol. Chem., 12, 239-243.
  16. Davies, R., Massey, R.C. and Mcweeny, D.J. (1980) The catalisis of the N-nitrosation of secondary amines by nitrosophenols. Food Chem., 6, 115-122. https://doi.org/10.1016/0308-8146(80)90027-8
  17. Blois, M.S. (1958) Antioxidant determinations by the use of a stable freeradical. Nature, 181, 1199-1200. https://doi.org/10.1038/1811199a0
  18. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M. and Rice-Evans, C. (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med., 26, 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  19. Marklund, S. and Marklund, G. (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem., 47, 469-474. https://doi.org/10.1111/j.1432-1033.1974.tb03714.x
  20. Rice-Evans, C.A., Miller, N.J., Bolwell, P.G., Bramley, P.M. and Pridham, J.B. (1995) The relative antioxidant activities of plant-derived polyphenolic flavonoids. Free Radic. Res., 22, 375-383. https://doi.org/10.3109/10715769509145649
  21. Boudet, A.M. (2007) Evolution and current status of research in phenolic compounds. Phytochemistry, 68, 2722-2735. https://doi.org/10.1016/j.phytochem.2007.06.012
  22. Seyoum, A., Asres, K. and El-Fiky, F.K. (2006) Structure-radical scavenging activity relationships of flavonoids. Phytochemistry, 67, 2058-2070. https://doi.org/10.1016/j.phytochem.2006.07.002
  23. Bondet, V., Brand-Williams, W. and Berset, C. (1997) Kinetics and mechanisms of antioxidant activity using the DPPH. free radical method. Food Sci. Technol., 30, 609-615.
  24. Kondo, S. (2000) The roles of cytokines in photoaging. J. Dermatol. Sci., 23, S30-S36. https://doi.org/10.1016/S0923-1811(99)00076-6
  25. Kang, H.Y., Yoon, T.J. and Lee, G.J. (2011) Whitening effects of marine Pesudomonas extract. Ann. Dermatol., 23, 144-149. https://doi.org/10.5021/ad.2011.23.2.144
  26. Chae, G.Y. and Ha, B.J. (2011) The comparative evaluation of fermented and non-fermented soybean extract on antioxidation and whitening. Toxicol. Res., 27, 205-209. https://doi.org/10.5487/TR.2011.27.4.205
  27. Park, H.Y., Kosmadaki, M., Yaar, M. and Gilchrest, B.A. (2009) Cellularmechanisms regulating human melanogenesis. Cell. Mol. Life Sci., 66, 1493-1506. https://doi.org/10.1007/s00018-009-8703-8
  28. Kwon, B.S., Haq, A.K., Pomerantz, S.H. and Halaban, R. (1987) Isolation and sequence of a cDNA clone for human tyrosinase that maps at the mouse c-albino locus. Proc. Natl. Acad. Sci. U.S.A., 84, 7473-7477. https://doi.org/10.1073/pnas.84.21.7473
  29. Schallreuter, K.U., Kothari, S., Chavan, B. and Spencer, J.D. (2008) Regulation of melanogenesis-controversies and new concepts. Exp. Dermatol., 17, 395-404. https://doi.org/10.1111/j.1600-0625.2007.00675.x
  30. del Marmol, V. and Beermann, F. (1996) Tyrosinase and related proteins in mammalian pigmentation. FEBS Lett., 381, 165-168. https://doi.org/10.1016/0014-5793(96)00109-3
  31. Boissy, R.E., Zhao, H., Oetting, W.S., Austin, L.M., Wildenberg, S.C., Boissy, Y.L., Zhao, Y., Sturm, R.A., Hearing, V.J., King, R.A. and Nordlund, J.J. (1996) Mutation in and lack of expression of tyrosinase-related protein-1(TRP-1) in melanocytes from an individual with brown oculocutaneous albinism: a new subtype of albinism classified as "OCA3". Am. J. Hum. Genet., 58, 1145-1156.
  32. Levy, C., Khaled, M. and Fisher, D.E. (2006) MITF: masterregulator of melanocyte development and melanoma oncogene. Trends Mol. Med., 12, 406-414. https://doi.org/10.1016/j.molmed.2006.07.008
  33. Park, H.Y., Wu, C., Yonemoto, L., Murphy-Smith, M., Wu, H., Stachur, C.M. and Gilchrest, B.A. (2006) MITF mediates cAMP-induced protein kinase C-${\beta}$ expression in human melanocytes. Biochem. J., 395, 571-578. https://doi.org/10.1042/BJ20051388

Cited by

  1. Induction of p53-Independent Apoptosis and G1 Cell Cycle Arrest by Fucoidan in HCT116 Human Colorectal Carcinoma Cells vol.15, pp.6, 2017, https://doi.org/10.3390/md15060154
  2. Protocatechuic Acid from Pear Inhibits Melanogenesis in Melanoma Cells vol.18, pp.8, 2017, https://doi.org/10.3390/ijms18081809
  3. An updated review on pharmacological activities and phytochemical constituents of evening primrose (genus Oenothera ) vol.7, pp.11, 2017, https://doi.org/10.1016/j.apjtb.2017.10.004
  4. Bioactive properties of Acacia dealbata flowers extracts pp.1877-265X, 2020, https://doi.org/10.1007/s12649-019-00639-4