UNIQUENESS AND VALUE SHARING PROBLEMS IN CLASS \mathcal{A} OF MEROMORPHIC FUNCTIONS

HARINA P. WAGHAMORE* AND RAJESHWARI S

Abstract

In this paper, we study the uniqueness and value sharing problems in class \mathcal{A} of meromorphic functions. We obtain significant results which improve as well as generalize the result of C.C Yang and Xinhou Hua [10].

AMS Mathematics Subject Classification : 65H05, 65F10.
Key words and phrases : Uniqueness, Meromorphic function, Differential polynomials.

1. Introduction

In this paper, a meromorphic function always means a function which is meromorphic in the whole complex plane. Let $f(z)$ and $g(z)$ be nonconstant meromorphic functions, $a \in \overline{\mathbb{C}}$. We say that f and g share the value a CM if $f(z)-a$ and $g(z)-a$ have the same zeros with the same multiplicities. We shall use the standard notations of value distribution theory, $T(r, f), m(r, f), N(r, f), \bar{N}(r, f), \ldots$ (Hayman[14], Yang[18], Laine[16] and Navanlinna[17]). We denote by $S(r, f)$ any function satisfying $S(r, f)=o\{T(r, f)\}$, as $r \rightarrow+\infty$, possibly outside of finite measure.
Let $f(z)$ and $g(z)$ are non-constant meromorphic functions and a be a finite complex number. We denote by $\bar{N}_{L}(r, f)$ the counting function for the poles of both f and g about which f has larger multiplicity than g, where multiplicity is not counted. Similarly, we have the notation for $\bar{N}_{L}(r, g)$.
We denote by \mathcal{A} the class of meromorphic functions f in \mathbb{C} which satisfy the condition $\bar{N}(r, f)+\bar{N}\left(r, \frac{1}{f}\right)=S(r, f)$. Clearly all functions in \mathcal{A} are transcendental meromorphic functions.
In 1920's R. Nevanlinna[17] proved the following result (the Nevanlinna four value theorem.)

[^0]Theorem A. Let f and g be two nonconstant meromorphic functions. If f and g share four distinct values CM, then f is a Mobius transformation of g.
For instance, $f=e^{z}, g=e^{-z}$ share $0, \pm 1, \infty$, and $f=\frac{1}{g}$.
In 1997, Yang and Hua[10], obtained following result.
Theorem B. Let f and g be two non-constant meromorphic functions, $n \geq 11$ an integer and $a \in C-\{0\}$. If $f^{n} f^{\prime}$ and $g^{n} g^{\prime}$ share the value $a \mathrm{CM}$, then either $f=d g$ for some $(n+1) t h$ root of unity d or $g(z)=c_{1} e^{c z}$ and $f(z)=c_{2} e^{-c z}$, where c, c_{1} and c_{2} are constants and satisfy $\left(c_{1} c_{2}\right)^{n+1} c^{2}=-a^{2}$.

2. Some Lemmas

Lemma 2.1 $([6])$. Let f be a meromorphic function of finite order and P a homogeneous differential polynomial in f of degree n. If $\Theta(0, f)=\Theta(\infty, f)=1$, then

$$
T(r, p) \sim n T(r, f)
$$

Lemma 2.2 ([11]). Let $f_{j}(j=1,2,3)$ be meromorphic functions that satisfy

$$
\sum_{j=1}^{3} f_{j}=1
$$

Assume that f_{1} is not a constant, and

$$
\sum_{j=1}^{3} N_{2}\left(r, \frac{1}{f_{j}}\right)+\sum_{j=1}^{3} \bar{N}\left(r, f_{j}\right)<(\lambda+0(1)) T(r), r \in I,
$$

where $\lambda<1, T(r)=\max \left\{T\left(r, f_{1}\right), T\left(r, f_{2}\right), T\left(r, f_{3}\right)\right\}, N_{2}\left(r, \frac{1}{f_{j}}\right)$ is the counting function of zeros of $f_{j}(j=1,2,3)$, where a multiple zero is counted two times and a simple zero is counted once. Then $f_{2}=1$ or $f_{3}=1$.
Lemma 2.3([13]). Let f be a non-constant meromorphic function. Then

$$
N\left(r, \frac{1}{f^{(k)}}\right) \leq N\left(r, \frac{1}{f}\right)+k \bar{N}(r, f)+S(r, f)
$$

where k is a positive integer.
Lemma $2.4([13])$. Let F and G be two distinct non-constant meromorphic functions, and let c be a complex number such that $c \neq 0,1$. If F and G share 1 and $c \mathrm{IM}$, and if $\bar{N}\left(r, \frac{1}{F}\right)+\bar{N}(r, F)=S(r, F)$ and $\bar{N}\left(r, \frac{1}{G}\right)+\bar{N}(r, G)=S(r, G)$, then F and G share $0,1, c, \infty$ CM.
Lemma 2.5 ([17]). If f and g are distinct non-constant meromorphic functions that share four values $a_{1}, a_{2}, a_{3}, a_{4} \mathrm{CM}$, then f is Mobius transformation of g : two of the shared values, say a_{1} and a_{2} are picard exceptional values and the cross ratio $\left(a_{1}, a_{2}, a_{3}, a_{4}\right)=-1$.
Lemma 2.6([13]). If $f(z) \in \mathcal{A}$ and k is a positive integer, then

$$
T\left(r, \frac{f^{(k)}}{f}\right)=S(r, f)
$$

Lemma 2.7 ([14]). Let f be a non-constant meromorphic functions and a_{1}, a_{2}, a_{3} be three distinct small meromorphic functions of f, then

$$
T(r, f) \leq \sum_{j=1}^{3} \bar{N}\left(r, \frac{1}{f-a_{j}}\right)+S(r, f)
$$

Lemma 2.8([14]). Suppose that f is a non-constant meromorphic function, $k \geq 2$ is an integer. If

$$
N(r, f)+N\left(r, \frac{1}{f}\right)+N\left(r, \frac{1}{f^{(k)}}\right)=S\left(r, \frac{f^{\prime}}{f}\right)
$$

then $f=e^{a z+b}$, where $a \neq 0, b$ are constants.
Following lemmas play a prominent role in improving our results.
Lemma 2.9. Let $f, g \in \mathcal{A}, n \geq m+k+1$ and k be a positive integer. If $f^{n}[P(f)]^{(k)}$ and $g^{n}[P(g)]^{(k)}$ share 1 CM, then

$$
T(r, g) \leq\left(\frac{n+m-k}{n-m-k}\right) T(r, f)+S(r, g)
$$

Proof. Let $G=g^{n}[P(g)]^{(k)}$. Then it is a polynomial of degree $(n+m-k)$. By lemma 2.1, we have

$$
\begin{equation*}
(n+m-k) T(r, g) \sim T(r, G) \tag{1}
\end{equation*}
$$

Applying Lemma 2.7 to $T(r, G)$, we get

$$
\begin{aligned}
(n+m-k) T(r, g) & \leq \bar{N}(r, G)+\bar{N}\left(r, \frac{1}{G}\right)+\bar{N}\left(r, \frac{1}{G-1}\right)+S(r, G) \\
& =\bar{N}\left(r, g^{n}[P(g)]^{(k)}\right)+\bar{N}\left(r, \frac{1}{g^{n}[P(g)]^{(k)}}\right) \\
& +\bar{N}\left(r, \frac{1}{g^{n}[P(g)]^{(k)}-1}\right)+S\left(r, g^{n}[P(g)]^{(k)}\right)
\end{aligned}
$$

Noting that

$$
\begin{aligned}
\bar{N}\left(r, g^{n}[P(g)]^{(k)}\right) & \leq \bar{N}\left(r, g^{n}\right)+N\left(r,[P(g)]^{(k)}\right) \\
& \leq \bar{N}(r, g)+m N(r, g)+k \bar{N}(r, g) \\
& =m N(r, g)+(k+1) \bar{N}(r, g)
\end{aligned}
$$

and $S(r, G)=S(r, g), \quad(b y(2.1))$
So,

$$
\begin{aligned}
(n+m-k) T(r, g) & \leq m N(r, g)+(k+1) \bar{N}(r, g)+\bar{N}\left(r, \frac{1}{g}\right) \\
& +N\left(r, \frac{1}{[P(g)]^{(k)}}\right)+\bar{N}\left(r, \frac{1}{g^{n}[P(g)]^{(k)}-1}\right)+S(r, g)
\end{aligned}
$$

Since $f^{n}[P(f)]^{(k)}$ and $g^{n}[P(g)]^{(k)}$ share 1 CM, it implies that $f^{n}[P(f)]^{(k)}-1$ and $g^{n}[P(g)]^{(k)}-1$ have same zeros with same multiplicities, using this with Lemma 2.3, we obtain that

$$
\begin{align*}
(n+m-k) T(r, g) & \leq m N(r, g)+(k+1) \bar{N}(r, g)+\bar{N}\left(r, \frac{1}{g}\right)+m N\left(r, \frac{1}{g}\right) \tag{2}\\
& +k \bar{N}(r, g)+\bar{N}\left(r, \frac{1}{f^{n}[P(f)]^{(k)}-1}\right)+S(r, g)
\end{align*}
$$

By hypothesis, we have

$$
\begin{aligned}
& \bar{N}(r, f)+\bar{N}\left(r, \frac{1}{f}\right)=S(r, f) \\
& \bar{N}(r, g)+\bar{N}\left(r, \frac{1}{g}\right)=S(r, g)
\end{aligned}
$$

Using Nevanlinna's first fundamental theorem and Lemma 2.1, we have

$$
\begin{aligned}
\bar{N}\left(r, \frac{1}{f^{n}[P(f)]^{(k)}-1}\right) & \leq T\left(r, \frac{1}{f^{n}[P(f)]^{(k)}-1}\right) \\
& =T\left(r, f^{n}[P(f)]^{(k)}\right)+O(1) \\
& \sim(n+m-k) T(r, f)+O(1)
\end{aligned}
$$

So,

$$
\begin{equation*}
\bar{N}\left(r, \frac{1}{f^{n}[P(f)]^{(k)}-1}\right) \leq(n+m-k) T(r, f)+O(1) \tag{3}
\end{equation*}
$$

using (3), (2) becomes

$$
\begin{aligned}
(n+m-k) T(r, g) & \leq m N(r, g)+m N\left(r, \frac{1}{g}\right)+(n+m-k) T(r, f)+S(r, g) \\
& \leq 2 m T(r, g)+(n+m-k) T(r, f)+S(r, g) \\
(n-m-k) T(r, g) & \leq(n+m-k) T(r, f)+S(r, g) \\
T(r, g) & \leq\left(\frac{n+m-k}{n-m-k}\right) T(r, f)+S(r, g)
\end{aligned}
$$

This completes the proof of Lemma.
Lemma 2.10. Let $f, g \in \mathcal{A}, n \geq m+1$ and k be a positive integer. If $f^{n}[P(f)]^{k}$ and $g^{n}[P(g)]^{k}$ share 1 CM , then $S(r, f)=S(r, g)$.

Proof. Proceeding as in the proof of Lemma 2.9, we have

$$
T(r, g) \leq\left(\frac{n+m-k}{n-m-k}\right) T(r, f)+S(r, g)
$$

Similarly, we have

$$
T(r, f) \leq\left(\frac{n+m-k}{n-m-k}\right) T(r, g)+S(r, f)
$$

using above two inequalities we easily obtain

$$
S(r, f)=S(r, g)
$$

This completes the proof of Lemma.
Lemma 2.11. Let $f, g \in \mathcal{A}, n \geq m+1$ and k be a positive integer. If $f^{n}[P(f)]^{(k)} g^{n}[P(g)]^{(k)}=1$, then $f=c_{3} e^{p z}$ and $g=c_{4} e^{-p z}$ where c_{3}, c_{4} and p are constants such that $(-1)^{k}\left(c_{3} c_{4}\right)^{n+1} p^{2 k}=1$.

Proof. Let

$$
\begin{equation*}
F=f^{n}[P(f)]^{(k)} \text { and } G=g^{n}[P(g)]^{(k)} \tag{4}
\end{equation*}
$$

By Lemma 2.1, we have

$$
\begin{gathered}
T(r, F) \sim(n+m-k) T(r, f), \\
T(r, G) \sim(n+m-k) T(r, g)
\end{gathered}
$$

clearly $S(r, F)=S(r, f) \operatorname{and} S(r, G)=S(r, g)$. By Lemma 2.10, we have

$$
S(r, f)=S(r, g)
$$

Thus

$$
\begin{equation*}
S(r, F)=S(r, f)=S(r, g)=S(r, G) . \tag{5}
\end{equation*}
$$

By hypothesis, we have

$$
\begin{equation*}
f^{n}[P(f)]^{(k)} g^{n}[P(g)]^{(k)}=1 \text { or } F G=1 \tag{6}
\end{equation*}
$$

From 6 and f and g are transcendental functions, it follows that

$$
\begin{equation*}
N\left(r, \frac{1}{f}\right)=0 \text { and } N\left(r, \frac{1}{g}\right)=0 \tag{7}
\end{equation*}
$$

By hypothesis, we have

$$
\begin{align*}
& \bar{N}(r, f)+\bar{N}\left(r, \frac{1}{f}\right)=S(r, f) \tag{8}\\
& \bar{N}(r, g)+\bar{N}\left(r, \frac{1}{g}\right)=S(r, g)
\end{align*}
$$

(6) can be expressed as

$$
f^{n}[P(f)]^{(k)}=\frac{1}{g^{n}[P(g)]^{(k)}}
$$

So we deduce that

$$
\begin{equation*}
N\left(r, f^{n}[P(f)]^{(k)}\right)=N\left(r, \frac{1}{g^{n}[P(g)]^{(k)}}\right) \tag{9}
\end{equation*}
$$

Using (8), we get

$$
\begin{aligned}
N\left(r, f^{n}[P(f)]^{(k)}\right) & =N\left(r, f^{n}\right)+N\left(r,[P(f)]^{(k)}\right) \\
& =n N(r, f)+m N(r, f)+k \bar{N}(r, f) \\
& =(n+m) N(r, f)+k \bar{N}(r, f) \\
& =(n+m) N(r, f)+S(r, f)
\end{aligned}
$$

Using this with Lemma 2.3 with (5), (7) and (8), (9) can be written as

$$
\begin{aligned}
(n+m) N(r, f)+S(r, f) & \leq N\left(r, \frac{1}{g^{n}}\right)+N\left(r, \frac{1}{[P(g)]^{(k)}}\right) \\
& \leq(n+m) N\left(r, \frac{1}{g}\right)+k \bar{N}(r, g)+S(r, g) \\
& =S(r, g)
\end{aligned}
$$

which implies that

$$
\begin{equation*}
N(r, f)=S(r, f) \tag{10}
\end{equation*}
$$

Similarly

$$
\begin{equation*}
N(r, g)=S(r, g) \tag{11}
\end{equation*}
$$

By (7), (8) and Lemma 2.3, we have

$$
\begin{aligned}
\bar{N}\left(r, \frac{1}{F}\right) & =\bar{N}\left(r, \frac{1}{f^{n}[P(f)]^{(k)}}\right) \\
& \leq \bar{N}\left(r, \frac{1}{f}\right)+N\left(r, \frac{1}{[P(f)]^{(k)}}\right) \\
& \leq \bar{N}\left(r, \frac{1}{f}\right)+m N\left(r, \frac{1}{f}\right)+k \bar{N}\left(r, \frac{1}{f}\right)+S(r, f) \\
& =S(r, f)
\end{aligned}
$$

Therefore

$$
\begin{equation*}
\bar{N}\left(r, \frac{1}{F}\right)=S(r, F) \tag{12}
\end{equation*}
$$

Similarly

$$
\begin{equation*}
\bar{N}\left(r, \frac{1}{G}\right)=S(r, G) \tag{13}
\end{equation*}
$$

Moreover by using (8) and (10), we have

$$
\begin{aligned}
\bar{N}(r, F)= & \bar{N}\left(r, f^{n}[P(f)]^{(k)}\right) \\
& \leq \bar{N}(r, f)+N\left(r,[P(f)]^{(k)}\right) \\
& \leq \bar{N}(r, f)+m N(r, f)+k \bar{N}(r, f) \\
& =S(r, f)
\end{aligned}
$$

Therefore

$$
\begin{equation*}
\bar{N}(r, F)=S(r, F) \tag{14}
\end{equation*}
$$

Similarly

$$
\begin{equation*}
\bar{N}(r, G)=S(r, G) \tag{15}
\end{equation*}
$$

It follows from (12)-(15) that

$$
\begin{align*}
& \bar{N}\left(r, \frac{1}{F}\right)+\bar{N}(r, F)=S(r, F) \\
& \bar{N}\left(r, \frac{1}{G}\right)+\bar{N}(r, G)=S(r, G) \tag{16}
\end{align*}
$$

In view of (6), we know that F and G share 1 and -1 IM, together this with (16) and Lemma 2.4 implies that F and G share $1,-1,0, \infty$ CM, thus by Lemma 2.5, we get that 0 and ∞ are picard values of F and G. Thus we deduce from (4) that both f and g are transcendental entire functions. By (7) we have

$$
\begin{array}{r}
f(z)=e^{\alpha(z)} \tag{17}\\
g(z)=e^{\beta(z)}
\end{array}
$$

where $\alpha(z)$ and $\beta(z)$ are non constant entire functions.
Then $T\left(r, \frac{f^{\prime}}{f}\right)=T\left(r, \frac{e^{\alpha} \alpha^{\prime}}{e^{\alpha}}\right)=T\left(r, \alpha^{\prime}\right)$. We claim that $\alpha(z)+\beta(z)=c, c$ is a constant.
From (17), we know that either α and β are transcendental functions or both α and β are polynomials.
From (6), we have

$$
\begin{aligned}
N\left(r, \frac{1}{[P(f)]^{(k)}}\right) & =N\left(r, g^{n}[P(g)]^{(k)} f^{n}\right) \\
& \leq n N(r, g)+N\left(r,[P(g)]^{(k)}\right)+n N(r, f) \\
& =0
\end{aligned}
$$

From this and (6), we get

$$
N(r, f)+N\left(r, \frac{1}{f}\right)+N\left(r, \frac{1}{f^{(k)}}\right)=0
$$

If $k \geq 2$, suppose that α is a transcendental entire function. From Lemma 2.7, we have $f=e^{\alpha(z)}=e^{a z+b}$, it implies that $\alpha(z)=a z+b$, a polynomial, which is a contradiction.
Thus α and β polynomials.
We deduce from (17) that

$$
\begin{aligned}
& {[P(f)]^{(k)}=\left[\left(\alpha^{\prime}\right)^{k}+P_{(k-1)\left(\alpha^{\prime}\right)}\right] p\left(e^{\alpha}\right) .} \\
& {[P(g)]^{(k)}=\left[\left(\beta^{\prime}\right)^{k}+Q_{(k-1)\left(\beta^{\prime}\right)}\right] p\left(e^{\beta}\right) .}
\end{aligned}
$$

where $P_{(k-1)\left(\alpha^{\prime}\right)}$ and $Q_{(k-1)\left(\beta^{\prime}\right)}$ are differential polynomials in α^{\prime} and β^{\prime} of degree at most $(k-1)$ respectively. Thus by (6) we obtain that

$$
\begin{equation*}
\left[\left(\alpha^{\prime}\right)^{k}+P_{(k-1)\left(\alpha^{\prime}\right)}\right]\left[\left(\beta^{\prime}\right)^{k}+Q_{(k-1)\left(\beta^{\prime}\right)}\right] p\left(e^{(n+m-k)(\alpha+\beta)}\right)=1 \tag{18}
\end{equation*}
$$

we deduce from (18) that $\alpha(z)+\beta(z)=c, c$ is a constant.
If $k=1$, from (17) we get,

$$
\begin{equation*}
\left(\alpha^{\prime}\right)\left(\beta^{\prime}\right) p\left(e^{(n+m-k)(\alpha+\beta)}\right)=1 \tag{19}
\end{equation*}
$$

Let $\alpha+\beta=\gamma$. If α and β are transcendental entire functions, then γ is not a constant and (19) implies that

$$
\begin{equation*}
\left(\alpha^{\prime}\right)\left(\gamma^{\prime}-\alpha^{\prime}\right) p\left(e^{(n+m-k) \gamma}\right)=1 \tag{20}
\end{equation*}
$$

Since

$$
\begin{aligned}
T\left(r, \gamma^{\prime}\right) & =m\left(r, \gamma^{\prime}\right) \\
& =m\left(r, \frac{p\left(e^{(n+m-k) \gamma^{\prime}}\right)}{p\left(e^{(n+m-k) \gamma}\right) \gamma^{\prime}}\right) \\
& =m\left(r, \frac{\left(p\left(e^{(n+m-k) \gamma}\right)\right)^{\prime}}{p\left(e^{(n+m-k) \gamma}\right)}\right)=S\left(r, p\left(e^{(n+m-k) \gamma}\right)\right)
\end{aligned}
$$

Thus (20) implies that Since

$$
\begin{aligned}
T\left(r, p\left(e^{(n+m-k) \gamma}\right)\right) & =T\left(r, \frac{1}{\left(\alpha^{\prime}\right)\left(\gamma^{\prime}-\alpha^{\prime}\right)}\right) \\
& \leq T\left(r,\left(\alpha^{\prime}\right)\left(\gamma^{\prime}-\alpha^{\prime}\right)\right)+O(1) \\
& \leq 2 T\left(r, \alpha^{\prime}\right)+S\left(r, p\left(e^{(n+m-k) \gamma}\right)\right)
\end{aligned}
$$

Which implies that

$$
T\left(r, p\left(e^{(n+m-k) \gamma}\right)\right)=O\left(T\left(r, \alpha^{\prime}\right)\right)
$$

Thus $T\left(r, \gamma^{\prime}\right)=S\left(r, \alpha^{\prime}\right)$. In view of (20) and by Lemma 2.7, we get

$$
T\left(r, \alpha^{\prime}\right) \leq \bar{N}\left(r, \alpha^{\prime}\right)+\bar{N}\left(r, \frac{1}{\alpha^{\prime}}\right)+\bar{N}\left(r, \frac{1}{\left.\alpha^{\prime}-\gamma^{\prime}\right)}\right)+S\left(r, \alpha^{\prime}\right) .
$$

Since α and β are transcendental entire function and in view of (20), we obtain $T\left(r, \alpha^{\prime}\right) \leq S\left(r, \alpha^{\prime}\right)$ and this implies that α^{\prime} is a constant, which is a contradiction. Thus α and β are both polynomials and $\alpha(z)+\beta(z)=c$, for a constant c.
Hence from (18), we get

$$
\begin{equation*}
\left(\alpha^{\prime}\right)^{2 k}=1+P_{(2 k-1)}\left(\alpha^{\prime}\right) \tag{21}
\end{equation*}
$$

where $P_{(2 k-1)}\left(\alpha^{\prime}\right)$ is differential polynomial in α^{\prime} From (21), we have

$$
\begin{aligned}
2 k T\left(r, \alpha^{\prime}\right) & =T\left(r,\left(\alpha^{\prime}\right)^{2 k}\right)=m\left(r,\left(\alpha^{\prime}\right)^{2 k}\right) \\
& \leq m\left(r, P_{(2 k-1)}\left(\alpha^{\prime}\right)\right)+O(1) \\
& =m\left(r, \frac{P_{(2 k-1)}\left(\alpha^{\prime}\right)}{\left(\alpha^{\prime}\right)^{2 k-1}}\left(\alpha^{\prime}\right)^{2 k-1}\right)+O(1) \\
& \leq m\left(r, \frac{P_{(2 k-1)}\left(\alpha^{\prime}\right)}{\left(\alpha^{\prime}\right)^{2 k-1}}\right)+m\left(r,\left(\alpha^{\prime}\right)^{2 k-1}\right)+O(1) \\
& \leq(2 k-1) T\left(r, \alpha^{\prime}\right)+S\left(r, \alpha^{\prime}\right)
\end{aligned}
$$

Therefore $T\left(r, \alpha^{\prime}\right) \leq S\left(r, \alpha^{\prime}\right)$, which implies that α^{\prime} is a constant. Thus $\alpha=$ $p z+c_{1}, \beta=-p z+c_{2}$. By (17), we represent f and g as $f=c_{3} e^{p z} \quad g=c_{4} e^{-p z}$.

Where c_{3}, c_{4} and p are constants such that $(-1)^{k}\left(c_{3} c_{4}\right)^{n+1} p^{2 k}=1$.
This completes the proof of Lemma.

3. Main Results

The Theorem B motivate us to think that, whether there exists a similar result, if $f^{n} f^{\prime}$ is replaced in Theorem B by $f^{n}[P(f)]^{(k)}$. In this paper, we prove significant result which improves as well as generalize Theorem B in class \mathcal{A}. Theorem 1. If $f, g \in \mathcal{A}, n \geq m+k+1$ and k be a positive integer. Then $f^{n}[P(f)]^{(k)}=1$ has infinitely many zeros.

Proof. Let $F=f^{n}[P(f)]^{(k)}$. By Lemma 2.1 and 2.6, we have

$$
\begin{align*}
(n+m-k) T(r, f) & \sim T\left(r, f^{n}[P(f)]^{(k)}\right) \\
& \leq \bar{N}\left(r, f^{n}[P(f)]^{(k)}\right)+\bar{N}\left(r, \frac{1}{f^{n}[P(f)]^{(k)}}\right) \tag{22}\\
& +\bar{N}\left(r, \frac{1}{f^{n}[P(f)]^{(k)}-1}\right)+S\left(r, f^{n}[P(f)]^{(k)}\right)
\end{align*}
$$

Noting that

$$
\begin{aligned}
\bar{N}\left(r, f^{n}[P(f)]^{(k)}\right) & \leq \bar{N}\left(r, f^{n}\right)+N\left(r,[P(f)]^{(k)}\right) \\
& \leq \bar{N}(r, f)+m N(r, f)+k \bar{N}(r, f) \\
& \leq m N(r, f)+(k+1) \bar{N}(r, f) \\
\bar{N}\left(r, \frac{1}{f^{n}[P(f)]^{(k)}}\right) & \leq \bar{N}\left(r, \frac{1}{f^{n}}\right)+N\left(r, \frac{1}{[P(f)]^{(k)}}\right) \\
& \leq \bar{N}\left(r, \frac{1}{f}\right)+N\left(r, \frac{1}{f^{n}[P(f)]^{(k)}}\right)
\end{aligned}
$$

and $(n+m-k) T(r, f) \sim T\left(r, f^{n}[P(f)]^{(k)}\right)$. So $S\left(r, f^{n}[P(f)]^{(k)}\right)=S(r, f)$, substituting above inequalities in (22), we obtain,

$$
\begin{aligned}
(n+m-k) T(r, f) & \leq m N(r, f)+(k+1) \bar{N}(r, f)+\bar{N}\left(r, \frac{1}{f}\right)+N\left(r, \frac{1}{[P(f)]^{(k)}}\right) \\
& +\bar{N}\left(r, \frac{1}{f^{n}[P(f)]^{(k)}-1}\right)+S(r, f)
\end{aligned}
$$

using Lemma 2.3, we get,

$$
\begin{align*}
(n+m-k) T(r, f) & \leq m N(r, f)+(k+1) \bar{N}(r, f)+\bar{N}\left(r, \frac{1}{f}\right)+m N\left(r, \frac{1}{f}\right) \tag{23}\\
& +k \bar{N}(r, f)+\bar{N}\left(r, \frac{1}{f^{n}[P(f)]^{(k)}-1}\right)+S(r, f)
\end{align*}
$$

By hypothesis, we have $\bar{N}(r, f)=S(r, f), \quad \bar{N}\left(r, \frac{1}{f}\right)=S(r, f)$
Therefore (23) becomes,

$$
\begin{aligned}
(n+m-k) T(r, f) & \leq m N(r, f)+m N\left(r, \frac{1}{f}\right)+\bar{N}\left(r, \frac{1}{f^{n}[P(f)]^{(k)}-1}\right)+S(r, f) \\
& \leq 2 m T(r, f)+\bar{N}\left(r, \frac{1}{f^{n}[P(f)]^{(k)}-1}\right)+S(r, f) \\
(n-m-k) T(r, f) & \leq \bar{N}\left(r, \frac{1}{f^{n}[P(f)]^{(k)}-1}\right)+S(r, f)
\end{aligned}
$$

which implies that $f^{n}[P(f)]^{(k)}-1$ has infinitely many zeros for $n \geq m+k+1$. This completes the proof of Theorem 1.

Theorem 2. Let $f, g \in \mathcal{A}, n \geq m+k+4$ and k be a positive integer. If $f^{n}[P(f)]^{(k)}$ and $g^{n}[P(g)]^{(k)}$ share 1 CM , then either $f \equiv t g$ for a constant t such that $t^{n+1}=1$ or $f(z)=c_{3} e^{p z}, g(z)=c_{4} e^{-p z}$ where c_{3}, c_{4} and p are constants such that $(-1)^{(k)}\left(c_{3} c_{4}\right)^{n+1} p^{2 k}=1$.

Proof. By hypothesis, $f^{n}[P(f)]^{(k)}$ and $g^{n}[P(g)]^{(k)}$ share 1 CM. Let

$$
\begin{equation*}
H(z)=\frac{f^{n}[P(f)]^{(k)}-1}{g^{n}[P(g)]^{(k)}-1} \tag{24}
\end{equation*}
$$

Then $H(z)$ is a meromorphic function satisfying $T(r, H)=O(T(r, f)+T(r, g))$, by the first fundamental theorem and Lemma 2.1.
From (24), we see that the zeros and poles of $H(z)$ are multiple and satisfy

$$
\begin{align*}
& \bar{N}(r, H) \leq \bar{N}_{L}(r, f) \\
& \bar{N}\left(r, \frac{1}{H}\right) \leq \bar{N}_{L}(r, g) \tag{25}
\end{align*}
$$

Let

$$
\begin{array}{r}
f_{1}=f^{n}[P(f)]^{(k)} \tag{26}\\
f_{2}=-H g^{n}\left[P(g)^{(k)}\right], \quad f_{3}=H
\end{array}
$$

then by using (24), we easily see that

$$
\begin{aligned}
f_{1}+f_{2}+f_{3} & =f^{n}[P(f)]^{(k)}-H g^{n}[P(g)]^{(k)}+H \\
& =f^{n}[P(f)]^{(k)}-H\left[g^{n}[P(g)]^{(k)}-1\right] \\
& =f^{n}[P(f)]^{(k)}-\left(\frac{f^{n}[P(f)]^{(k)}-1}{g^{n}[P(g)]^{(k)}-1}\right)\left[g^{n}[P(g)]^{(k)}-1\right] \\
& =1
\end{aligned}
$$

Assuming that f_{1} is non-constant and by Lemma 2.2, we have

$$
\begin{align*}
& \sum_{j=1}^{3} N_{2}\left(r, \frac{1}{f_{j}}\right)+\sum_{j=1}^{3} \bar{N}\left(r, f_{j}\right) \\
& =N_{2}\left(r, \frac{1}{f_{1}}\right)+N_{2}\left(r, \frac{1}{f_{2}}\right)+N_{2}\left(r, \frac{1}{f_{3}}\right)+\bar{N}\left(r, f_{1}\right) \tag{27}\\
& +\bar{N}\left(r, f_{2}\right)+\bar{N}\left(r, f_{3}\right) \\
& \leq N_{2}\left(r, \frac{1}{f^{n}[P(f)]^{(k)}}\right)+N_{2}\left(r, \frac{1}{g^{n}[P(g)]^{(k)}}\right)+N_{2}\left(r, \frac{1}{H}\right) \\
& +\bar{N}\left(r, f^{n}[P(f)]^{(k)}\right)+\bar{N}\left(r, g^{n}[P(g)]^{(k)}\right)+\bar{N}(r, H) .
\end{align*}
$$

Noting that

$$
\begin{gathered}
\bar{N}\left(r, f^{n}[P(f)]^{(k)}\right) \leq m N(r, f)+(k+1) \bar{N}(r, f) \\
\bar{N}\left(r, g^{n}[P(f)]^{(k)}\right) \leq m N(r, g)+(k+1) \bar{N}(r, g)
\end{gathered}
$$

using this with (25) and Lemma 2.3, (27) becomes

$$
\begin{align*}
& \sum_{j=1}^{3} N_{2}\left(r, \frac{1}{f_{j}}\right)+\sum_{j=1}^{3} \bar{N}\left(r, f_{j}\right) \\
& =2 \bar{N}\left(r, \frac{1}{f}\right)+N\left(r, \frac{1}{[P(f)]^{(k)}}\right) \\
& +2 \bar{N}\left(r, \frac{1}{g}\right)+N\left(r, \frac{1}{[P(g)]^{(k)}}+(k+1) \bar{N}(r, f)+m N(r, g)\right. \\
& +(k+1) \bar{N}(r, g)+\bar{N}(r, H) \\
& \leq 2 \bar{N}\left(r, \frac{1}{f}\right)+m N\left(r, \frac{1}{f}\right)+k \bar{N}(r, f) \tag{28}\\
& +2 \bar{N}\left(r, \frac{1}{g}\right)+m N\left(r, \frac{1}{g}\right)+k \bar{N}(r, g)+2 \bar{N}_{L}(r, g) \\
& +m N(r, f)+(k+1) \bar{N}(r, f)+m N(r, g)+(k+1) \bar{N}(r, g) \\
& +\bar{N}_{L}(r, f)+S(r, f)+S(r, g) \\
& =2\left(\bar{N}\left(r, \frac{1}{f}\right)+\bar{N}\left(r, \frac{1}{g}\right)\right)+m\left(N\left(r, \frac{1}{f}\right)+N\left(r, \frac{1}{g}\right)\right) \\
& +(2 k+1)(\bar{N}(r, f)+\bar{N}(r, g))+m(N(r, f)+N(r, g)) \\
& +2 \bar{N}_{L}(r, g)+\bar{N}_{L}(r, f)+S(r, f)+S(r, g) .
\end{align*}
$$

Since $f, g \in \mathcal{A}$, we have $\bar{N}(r, f)+\bar{N}\left(r, \frac{1}{f}\right)=S(r, f)$
$\bar{N}(r, g)+\bar{N}\left(r, \frac{1}{g}\right)=S(r, g)$

Therefore

$$
\begin{align*}
& \sum_{j=1}^{3} N_{2}\left(r, \frac{1}{f_{j}}\right)+\sum_{j=1}^{3} \bar{N}\left(r, f_{j}\right) \\
& \leq m\left(N\left(r, \frac{1}{f}\right)+N\left(r, \frac{1}{g}\right)\right)+m(N(r, f)+N(r, g))+2 \bar{N}_{L}(r, g) \tag{29}\\
& +\bar{N}_{L}(r, f)+S(r, f)+S(r, g)
\end{align*}
$$

Noting that

$$
2 \bar{N}_{L}(r, g)+\bar{N}_{L}(r, f) \leq 2 \bar{N}(r, f)=S(r, f)
$$

or

$$
2 \bar{N}_{L}(r, g)+\bar{N}_{L}(r, f) \leq 2 \bar{N}(r, g)=S(r, g)
$$

Thus (29) becomes

$$
\sum_{j=1}^{3} N_{2}\left(r, \frac{1}{f_{j}}\right)+\sum_{j=1}^{3} \bar{N}\left(r, f_{j}\right) \leq 2 m(T(r, f)+T(r, g))+S(r, f)+S(r, g)
$$

for $m=1$, using Lemma 2.9 and 2.10, we get

$$
\begin{aligned}
\sum_{j=1}^{3} N_{2}\left(r, \frac{1}{f_{j}}\right)+\sum_{j=1}^{3} \bar{N}\left(r, f_{j}\right) & \leq 2 m T(r, f)+2 m \frac{(n+m-k)}{(n-m-k)} T(r, f)+S(r, f) \\
& =\left[2 m+2 m\left(\frac{n+m-k}{n-m-k}\right)\right] T(r, f)+S(r, f) \\
& =2 m\left[1+\frac{n+m-k}{n-m-k}\right] T(r, f)+S(r, f) \\
& =2 m\left[\frac{n-m-k+n+m-k}{n-m-k}\right] T(r, f)+S(r, f) \\
& =\frac{4 m(n-k)}{n-m-k} T(r, f)+S(r, f) \\
& \leq \frac{4 m(n-k)}{(n-m-k)(n+m-k)} T(r)+S(r, f) \\
& \leq\left(\frac{4 m(n-k)}{(n-m-k)(n+m-k)}+O(1)\right) T(r)
\end{aligned}
$$

Since $n \geq m+k+4, \frac{4 m(n-k)}{(n-m-1)(n+m-1)}<1$, using Lemma 2.2, we get $f_{2}=1$ or $f_{3}=1$. Next we consider two cases:
Case 1. $f_{2}=1$ i.e., $-H g^{n}[P(g)]^{(k)}=1$ using (24) we have

$$
\frac{f^{n}[P(f)]^{(k)}-1}{g^{n}[P(g)]^{(k)}-1} g^{n}[P(g)]^{(k)}=1
$$

by simple computing, we get

$$
f^{n}[P(g)]^{(k)} g^{n}[P(g)]^{(k)}=1
$$

By Lemma 2.11, we get the conclusion of Theorem 2.
Case 2. $f_{3}=1$ i.e., $H=1$ using (24), we have

$$
\frac{f^{n}[P(f)]^{(k)}-1}{g^{n}[P(g)]^{(k)}-1}=1
$$

i.e.,

$$
\begin{equation*}
f^{n}[P(f)]^{(k)}=g^{n}[P(g)]^{(k)} . \tag{30}
\end{equation*}
$$

By Lemma 2.1, we have

$$
\begin{align*}
T\left(r, f^{n}[P(f)]^{(k)}\right) & =T\left(r, g^{n}[P(g)]^{(k)}\right) \\
(n+m) T(r, f) & =(n+m) T(r, g) \\
T(r, f) & =T(r, g) \tag{31}
\end{align*}
$$

and also

$$
\begin{equation*}
S(r, f)=S(r, g) \tag{32}
\end{equation*}
$$

Let $h=\frac{g}{f}$. Then by (30), we have

$$
\begin{gathered}
h^{n}=\frac{[P(f)]^{(k)}}{[P(g)]^{(k)}}, \\
h^{(n+1)}=\frac{g[P(f)]^{(k)}}{f[P(g)]^{(k)}} .
\end{gathered}
$$

Suppose that h is not a constant.
By (31), we have

$$
\begin{aligned}
T(r, h) & =T\left(r, \frac{g}{f}\right) \\
& \leq T(r, g)+T(r, f)+O(1) \\
& \leq 2 T(r, f)+O(1)
\end{aligned}
$$

Which implies that

$$
S(r, h)=S(r, f)
$$

Similarly

$$
S(r, h)=S(r, g)
$$

Thus, by (32)

$$
S(r, h)=S(r, f)=S(r, g)
$$

By the first fundamental theorem and Lemma 2.6, we have

$$
\begin{aligned}
T\left(r, h^{(n+1)}\right) & =T\left(r, \frac{g[P(f)]^{(k)}}{f[P(g)]^{(k)}}\right) \\
(n+1) T(r, h) & \leq T\left(r, \frac{[P(f)]^{(k)}}{f}\right)+T\left(r, \frac{g}{[P(g)]^{(k)}}\right)+O(1) \\
& =T\left(r, \frac{[P(f)]^{(k)}}{f}\right)+T\left(r, \frac{[P(g)]^{(k)}}{g}\right)+O(1) \\
& =S(r, f)+S(r, g) \\
& =S(r, h)
\end{aligned}
$$

Which is a contradiction since $n \geq m+k+4$. Therefore h is a constant. Since f and g are transcendental meromorphic functions, we have $h \neq 0$.
Let $t=\frac{1}{h}$, which implies that $f=t g$, From (30), we obtain $t^{n+1}=1$. This completes the proof of the Theorem 2.

References

1. W.L. Xiong, Uniqueness of an entire function and its differential polynomial, J. Math. (Wuhan) 22 (2002), no. 2, 203-206.
2. Yang Le, The multiple values of meromorphic functions and of combinations of functions, Chinese Math.-Acta 5 (1964), 460-470.
3. H.C.Xie, The problems on multiple values and uniqueness of meromorphic functions. J.Fujian Normal Univ. 10 (1983), 1-10.
4. H.S. Gopalakrishna and S. S. Bhoosnurmath, Uniqueness theorems for meromorphic functions, Tamkang J. Math. 16 (1985), no. 4, 49-57.
5. H.S. Gopalakrishna and S. S. Bhoosnurmath, Uniqueness theorems for meromorphic functions, Math. Scand. 39 (1976), no. 1, 125-130.
6. H.S. Gopalakrishna and S. S. Bhoosnurmath, On the deficiencies of differential polynomials, J. Karnatak Univ. Sci. 18 (1973), 329-335.
7. H.X. Yi, A note on the questions of multiple values and uniqueness of meromorphic functions, Chinese Quart. J. Math. 2 (1987), no. 1, 99-104.
8. H.X.Yi, On the uniqueness of the family \mathcal{F} of meromorphic functions, Chinese Quart. J. Math. 3 (1988), no. 4, 58-61.
9. H.X.Yi, The multiple values of meromorphic functions and uniqueness. Chin. Ann. Math.(A) 10 (1989), no. 4, 421-427.
10. C.-C. Yang and X. Hua, Uniqueness and value-sharing of meromorphic functions, Ann. Acad. Sci. Fenn. Math. 22 (1997), no. 2, 395-406.
11. L.-Z. Yang and J.-L. Zhang, Non-existence of meromorphic solutions of a Fermat type functional equation, Aequationes Math. 76 (2008), no. 1-2, 140-150.
12. R. Nevanlinna, Einige Eindeutigkeitssätze in der Theorie der Meromorphen Funktionen, Acta Math. 48 (1926), no. 3-4, 367-391.
13. C.-C. Yang and H.-X. Yi, Uniqueness theory of meromorphic functions, Mathematics and its Applications 557, Kluwer Acad. Publ., Dordrecht, 2003.
14. W.K. Hayman, Meromorphic functions, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1964.
15. X.B.Zhang, J.F.Xu and H.X.Yi, Value-sharing of meromorphic functions and Fang's problem. arXiv:1009.2132v1 [math.CV] 11 Sep. 2010.
16. I. Laine, Nevanlinna theory and complex differential equations, de Gruyter Studies in Mathematics, 15, de Gruyter, Berlin, 1993.
17. R.Nevanlinna, Les theorems de picad-Borel et la theorie des fonctions meromorphes, Collection de Monographies sur la Thorie des Fonctions publie sous la direction de M. Emile Borel. 1929.
18. L. Yang, Value distribution theory, translated and revised from the 1982 Chinese original, Springer, Berlin, 1993.

HARINA P. WAGHAMORE

Associate Professor, Department of Mathematics, Jnanabharathi Campus,Bangalore University, Bangalore-56.
e-mail:harinapw@gmail.com

RAJESHWARI S.

Research Scholar, Department of Mathematics, Jnanabharathi Campus,Bangalore University, Bangalore-56.
e-mail: rajeshwaripreetham@gmail.com

[^0]: Received April 27, 2016. Revised July 27, 2016. Accepted August 3, 2016. ${ }^{*}$ Corresponding author.
 © 2017 Korean SIGCAM and KSCAM.

