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GRAPHS OF ORDER A PRODUCT OF THREE PRIMES

MODJTABA GHORBANI∗ AND MAHIN SONGHORI

Abstract. The Cayley graph Γ = Cay(G,S) is called normal edge-transitive
if NA(R(G)) acts transitively on the set of edges of Γ, where A = Aut(Γ)

and R(G) is the regular subgroup of A. In this paper, we determine all

hexavalent normal edge-transitive Cayley graphs on groups of order pqr,
where p > q > r > 2 are prime numbers.
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1. Introduction

Xu was the first mathematician who proposed the concept of normal Cayley
graph [15] and then Wang et al. [14] obtained all disconnected normal Cayley
graphs. Recently, the normality of edge-transitive Cayley graphs is considered by
mathematicians and one of the standard problems in this area is to determine the
normal edge-transitivity of Cayley graphs with specific orders, see [2, 4, 11, 14].
Baik et al. in [2] studied normal edge-transitivity of Cayley graphs on abelian
groups of valency at most five and Bosma et al. in [3] also considered the edge-
transitive Cayley graphs of valency four on non-abelian simple groups. In [5, 12]
authors obtained all tetravalent normal edge-transitive Cayley graphs on either
a group of odd order or a finite non-abelian simple group. Recently, Kovács
[11] classified all connected tetravalent non-normal arc-transitive Cayley graphs
on dihedral groups and Darafsheh et al. [4] studied the normal edge-transitive
Cayley graphs on non-abelian groups of order 4p, where p is a prime number.
In this paper, we consider the hexavalent normal edge-transitive Cayley graphs
on groups of order pqr, where p > q > r > 2 are prime numbers.

Here, in the next section, we give the necessary definitions and some prelimi-
nary results. In section three, we compute the full automorphism group of group
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Fp,q and then we determine the normality of related Cayley graph. Finally, in
section four, we verify the normal edge-transitivity of hexavalent Cayley graphs
of order pqr. Here, our notation is standard and mainly taken from the standard
books of algebraic graph theory such as [7].

2. Definitions and Preliminaries

In this section, we introduce some basic notation and terminology used through-
out the paper. All graphs considered here are finite, simple, undirected and
connected. The vertex set, the edge set and the automorphism group of graph
Γ are denoted by V (Γ), E(Γ) and Aut(Γ), respectively. For a finite group G,
the generating subset S is symmetric if 1 6∈ S and S = S−1. The Cayley graph
Γ = Cay(G,S) on G with respect to S has the vertex set V (Γ) = G and edge
set E(Γ) = {(g, sg)|g ∈ G, s ∈ S}. By this definition Γ always is connected. The
Cayley graph Γ = Cay(G,S) is normal if G E Aut(Γ).

The regular subgroup of Aut(Γ) is R(G) = {ρg : G→ G, ρg(x) = xg,∀x ∈ G}.
One can prove easily that for every g ∈ G, ρg ∈ Aut(Γ) and R(G) ∼= G. Define
now Aut(G,S) = {α ∈ Aut(G), α(S) = S}, then Aut(G,S) is a subgroup of
Aut(G) which fixes the subset S. Let A = Aut(Γ), a Cayley graph Γ is called
normal edge-transitive or normal arc-transitive if NA(R(G)) acts transitively on
the set of edges or arcs of Γ, respectively. If Γ is normal edge-transitive, but
not normal arc-transitive, then it is called normal half- arc-transitive. The main
theorems of this paper are based on two following fundamental results:

Proposition 2.1. [2, 13], Let Γ = Cay(G,S) be a connected Cayley graph on
S. Then Γ is normal edge-transitive if and only if Aut(G,S) is either transitive
on S or has two orbits in S in the form of T and T−1, where T is a non-empty
subset of S and S = T ∪ T−1.

Corollary 2.2. Let Γ = Cay(G,S) and H be the subset of all involutions of the
group G. If 〈H〉 6= G and Γ is connected normal edge-transitive, then its valency
is even.

Corollary 2.3. Let Γ is connected normal edge-transitive Cayley graph, then
all elements of S have the same order.

For given graphs Γ1 and Γ2 their Cartesian product Γ1�Γ2 is defined as the
graph on the vertex set V (Γ1) × V (Γ2), where two vertices u = (u1, u2) and
v = (v1, v2) are adjacent if and only if either ([u1 = v1 and u2v2 ∈ E(Γ2)]) or
([u2 = v2 and u1v1 ∈ E(Γ1)]). Let also G and H be two groups, then the direct
product of G and H is denoted by G×H.

For given graphs Γ1 and Γ2 we define their direct product Γ1�Γ2 as the graph
on the vertex set V (Γ1)× V (Γ2) and two vertices u = (u1, u2) and v = (v1, v2)
are adjacent if and only if u1v1 ∈ E(Γ1) and u2v2 ∈ E(Γ2).
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Theorem 2.4. [1] Let Γ1 = Cay(G,S1) and Γ2 = Cay(H,S2) be two Cayley
graphs. Then the Cartesian product Γ1�Γ2 is the Cayley graph of the direct
product G×H with the generating subset (S1, 1) ∪ (1, S2).

Theorem 2.5. [1] Let Γ1 = Cay(G,S1) and Γ2 = Cay(H,S2) be two Cayley
graphs, then the direct product Γ1 � Γ2 is the Cayley graph of G × H with the
generating subset S1 × S2.

Theorem 2.6. Let Γ1 = Cay(G,S1), Γ2 = Cay(H,S2) and gcd(|G|, |H|) = 1,
then

i ) Aut(G×H,S) = Aut(G,S1)×Aut(H,S2) where S = (S1, 1)∪ (1, S2).
ii ) Aut(G×H,S1 × S2) = Aut(G,S1)×Aut(H,S2).

Proof. i ) Since G, H are finite and gcd(|G|, |H|) = 1, it is a well-known
fact that

Aut(G×H) = Aut(G)×Aut(H)

and hence

Aut(G×H,S) = {σ = (α, β) ∈ Aut(G)×Aut(H);σ(S) = S}.
But for all s ∈ S, s = (x, 1) or s = (1, y) where x ∈ S1 and y ∈ S2.
On the other hand, (α, β)(x, 1) = (α(x), 1) and (α, β)(1, y) = (1, β(y)).
It’s immediate that (α, β)(x, 1), (α, β)(1, y) ∈ S if and only if α(x) ∈ S1

and β(y) ∈ S2 for all x ∈ S1, y ∈ S2 if and only if α ∈ Aut(G,S1) and
β ∈ Aut(G,S2). This implies that

Aut(G×H,S) = Aut(G,S1)×Aut(H,S2).

ii ) It is not difficult to see that for S = S1 × S2 we have

Aut(G×H,S) = {(α, β) ∈ Aut(G)×Aut(H) : (α, β)(S) = S}.
This means that for for all (x, y) ∈ S we have

Aut(G×H,S) = {(α, β) ∈ Aut(G)×Aut(H) : (α, β)(x, y) ∈ S1 × S2}
= {(α, β) ∈ Aut(G)×Aut(H) : (α(x), β(y)) ∈ S1 × S2}
= {(α, β) ∈ Aut(G)×Aut(H) : α(x) ∈ S1, β(y) ∈ S2}
= {(α, β) ∈ Aut(G)×Aut(H) : α ∈ Aut(G,S1), β ∈ (H,S2)}
= Aut(G,S1)×Aut(H,S2).

�

It is a well-known fact that, if H acts on Γ where K acts on Ω and Γ∩Ω = ∅,
then H ×K acts on disjint union Γ∪̇Ω as follows:

x(h,k) =

{
xh x ∈ Γ
xk x ∈ Ω

.

This yields that It is easy to see that

|FixΓ∪̇Ω((g, h))| = |FixΓ(g)|+ |FixΩ(h)|. (1)
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Suppose the number of orbits of two actions (G|Γ) and (H|Ω) are t and s,
respectively. According to Burnside-Cauchi Theorem and by using Eq.(1), we
can verify that the number of orbits of G×K under the action (H ×K|Γ∪̇Ω) is
t+ s. Also, H ×K acts on Γ× Ω by (a, b)g = (ag, bg) and then

FixΓ×Ω((g, h)) = FixΓ(g)× FixΩ(h).

This implies that number of orbits of the action (G×H|Γ× Ω) is ts. Thus, we
can deduce the following proposition:

Proposition 2.7. Let (G|X) and (H|Y ) be two transitive actions, then the
action (G×H|X × Y ) is transitive while (G×H|X∪̇Y ) has two orbits.

Corollary 2.8. Let Γ1 = Cay(G,S1), Γ2 = Cay(H,S2) be normal edge-transitive
Cayley graphs and S = S1×S2. Suppose at least one of graphs Γ1 or Γ2 is normal
arc-transitive, then Γ1 � Γ2 is normal edge transitive.

Proof. Use Proposition 2.7. �

Corollary 2.9. Let Γ1 = Cay(G,S1),Γ2 = Cay(H,S2) be normal edge-transitive
Cayley graphs but not arc-transitive and S = (S1, 1)∪(1, S2), then Γ = Cay(G×
H,S) is not normal edge-transitive.

Proof. First assume that Γ1 and Γ2 are normal edge-transitive and two actions
Aut(G,S1) on S1 and Aut(H,S2) on S2 are transitive, respectively. Let S =
(S1, 1) ∪ (1, S2), by applying Proposition 2.7, it follows that Aut(G×H,S) has
two orbits on S such as T1 and T2 where T−1

1 6= T2. Now by using Proposition
2.1, it follows that Aut(G × H,S) is not normal edge-transitive. If the action
Aut(G,S1) on S1 or the action Aut(H,S2) on S2 has two orbits by a similar
way, one can prove that Γ1�Γ2 is not normal edge-transitive and this completes
the proof. �

3. Main results

In the begining of this section, we compute the full automorphism group of
the Frobenius group. This group plays a significant role in computing the next
results of this paper. In general, a Frobenius group of order pq (p is prime and
q|p− 1) is a group of order pq by the following presentation:

Fp,q = 〈a, b : ap = bq = 1, b−1ab = au〉,
where u is an element of order q in multiplicative group Z∗p.

Lemma 3.1. We have
|Aut(Fp,q)| = p(p− 1).

Proof. By considering the presentation of Fp,q, one can see that all elements of
this group are as follows:

1, a, · · · , ap−1,

b, ba, · · · , bap−1,
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...

bq−1, bq−1a, · · · , bq−1ap−1.

Let α ∈ Aut(Fp,q), necessarily α(〈a〉) = 〈a〉 and then there exist 1 ≤ i ≤ p − 1
such that α(a) = ai. We claim that α(b) = bai, where 1 ≤ i ≤ p − 1. Suppose
α(b) = bras and α(a) = ai (1 ≤ s, i ≤ p − 1 and 1 ≤ r ≤ q − 1). Since
α(bab−1) = α(au) where o(u) = q in Z∗p, one can see that brasaia−sb−r = aui

and so au
ri = aui. This leads us to conclude that r = 1 and thus α(b) = bas.

One can verify that |Aut(Fp,q)| ≤ p(p − 1). Consequently, all automorphisms
of Aut(Fp,q) are of form αi,j , where αi,j(a) = ai and αi,j(b) = baj . On the
other hand, all such automorphisms are distinct and for αr,s, αi,j ∈ Aut(Fp,q),
αr,sαi,j = αir,s+jr. Hence, αr,sαi,j ∈ Aut(Fp,q) and thus |Aut(Fp,q)| ≥ p(p− 1).
This completes the proof. �

Theorem 3.2. We have

Aut(Fp,q) ∼= Fp,p−1.

Proof. Consider two following maps:

α :

{
a→ at

−1

b→ b
, β :

{
a→ a
b→ ba

,

where t is an element of order p− 1 in Z∗p and t−1 is it’s inverse. One can prove
that α, β are distinct automorphisms of Fp,q where o(α) = p, o(β) = p− 1 and

αβ(a) = α(at
−1

) = at
−1

= βαt(a),

αβ(b) = α(b) = ba.

On the other hand, βαt(b) = β(bat) = b(at
−1

)t = ba and so αβ(b) = βαt(b).
Hence, for all x ∈ Fp,q, αβ(x) = βαt(x) and thus β−1αβ = αt. Let also

H = 〈α, β : αp = βp−1 = id, β−1αβ = αv〉,

where vp−1 ≡ 1 (mod p). Then H ∼= Fp,p−1 is a subgroup of Aut(Fp,q) of order
p(p− 1) and by Lemma 3.1, the proof is completed. �

3.1. Normal edge-transitive Cayley graphs. Here, we study the normal
edge-transitivity of Cayley graph Γ = Cay(G,S) where G ∼= Fp,q. According to
Corollary 2.3, all elements of S have the same order. Further, we have:

Lemma 3.3. For 1 ≤ i ≤ p− 1, ai 6∈ S.

Proof. Suppose in the contrary that ai ∈ S and assume that Aut(Fp,q, S) acts
transitively on S. Since only ai(1 ≤ i ≤ p − 1) has order p, according to
Proposition 2.1 and Corollary 2.3, S ⊆ 〈a〉 and thus Fp,q ⊆ 〈a〉, a contradiction.
Now suppose the action Aut(Fp,q, S) on S has two orbits such that S = T ∪T−1.
Since ai ∈ S, without loss of generality, we can take ai ∈ T and a−i ∈ T−1. By
a similar way, we can show Fp,q ⊆ 〈a〉, a contradiction. �
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Now suppose R be the subgroup of Z∗p consisting of the powers of u, thus
|R| = q. Write r = (p − 1)/q and choose coset representatives v1, · · · , vr for R
in Z∗p. Then, the conjugacy classes of Fp,q are as follows [9]:

{1},
(avi)G = {avir : r ∈ R} (1 ≤ i ≤ r),
(bn)G = {ambn : 0 ≤ m ≤ p− 1}(1 ≤ n ≤ q − 1).

Theorem 3.4. The Cayley graph Cay(Fp,q, S) is tetravalent normal edge-transitive
if and only if

S = {biam, bian, (biam)−1, (bian)−1},
where 1 ≤ i ≤ q − 1, ≤ n,m ≤ p and p, q are prime numbers.

Proof. First, we show o(biaj) = q, (1 ≤ i ≤ q − 1 and 1 ≤ j ≤ p). To do this,
note that

(biaj)2 = b2i(b−iajbi)aj = b2iaj(1+ui).

This yields that (biaj)q = bqiaj(1+ui+···+u(q−1)i) = e and so o(biaj) = q. Suppose
Γ = Cay(Fp,q, S) is normal edge-transitive. A according to Proposition 2.1,
Aut(Fp,q, S) has at most two orbits. First, suppose Cay(Fp,q, S) be transitive on
S. According to Corollary 2.2 , |S| is even and S ⊆ {biaj 1 ≤ i ≤ q, 1 ≤ j ≤ p}.
Let S = {biaj , bman, (biaj)−1, (bman)−1}. Since, Aut(Fp,q, S) on S is transitive,
there exist β ∈ Aut(Fp,q) such that β(biaj) = bman. This leads us to verifym = i
which yields that S = {biam, bian, (biam)−1, (bian)−1}. On the other hand,
an automorphism of Aut(Fp,q) maps biaj to a−jb−i and it follows that i = q,
a contradiction. Hence, Aut(Fp,q, S) is not transitive on S. Finally, suppose
S = T ∪ T−1 where T = {biaj , bman}. Clearly, there exists α ∈ Aut(Fp,q) such
that α(biaj) = bman or α(biaj) = a−nb−m. If α(biaj) = bman, then i = n
and necessarily T = {biaj , bian}. If α(biaj) = a−nb−m, then m = −i and so
T = {biaj , a−nb−i}. In general, in this case we have:

S = {biam, bian, (biam)−1, (bian)−1},
and so Aut(Fp,q, S) has two orbits on S. Conversely, if S is as above, then
Cay(Fp,q, S) is normal edge-transitive and this completes the proof. �

4. Normal edge-transitive Cayley graph of order pqr

Let G be a group of order pqr, where p > q > r > 2 are prime numbers, the
aim of this section is to compute the normal edge-transitivity of G. In [8] the
presentations of groups of order pqr(p > q > r) are introduced and in [6] it is
proved that all groups of order pqr are isomorphic to exactly one of the following
presentations:

• G1 = Zpqr,
• G2 = Fp,qr(qr|p− 1),
• G3 = Zr × Fp,q(q|p− 1),
• G4 = Zq × Fp,r(r|p− 1),
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• G5 = Zp × Fq,r(r|q − 1),

• Gi+5 = 〈a, b, c : ap = bq = cr = 1, ab = ba, c−1bc = bu, c−1ac = av
i〉,

where r|p− 1, q − 1, o(u) = r in Z∗q and o(v) = r in Z∗p (1 ≤ i ≤ r − 1).

By using Corollary 2.8 and Theorem 3.4, the Cayley graph Γi = Cay(Gi, Si)
(1 ≤ i ≤ 5) is normal edge-transitive, but the main problem is finding a normal
symmetric generating subset with exactly four elements. To do this consider the
following cases:

• G1 = Zpqr, let x, y are two generator of this group, then a symmetric
normal generating subset of G1 is S = {x, y, x−1, y−1} and hence the
automorphism group ϕ : G1 → G1 with ϕ(a) = a−1 (for all a ∈ G1) is in
Aut(G1, S). This means that Γ1 is tetravalent normal edge-transitive.

• G2 = Fp,qr(qr|p−1), according to Theorem 3.4, Γ2 is tetravalent normal
edge-transitive.

• G3 = Zr × Fp,q(q|p− 1), this group has the following presentation:

〈a, b, c : ap = bq = cr = 1, b−1ab = au, bc = cb, ac = ca〉,
where o(u) = q in Z∗p. Let Γ3 = Cay(G3, S2) and Γ3 is tetravalent

normal edge-transitive. Clearly ai, bj , ck 6∈ S and hence we can suppose
S ⊆ {cibjak, (cibjak)−1, cxblas, (cxblas)−1} where 1 ≤ i, x ≤ r − 1, 1 ≤
j, l ≤ p− 1 and 1 ≤ s, k ≤ q − 1. It is easy to see that G3 = 〈S〉. Since
gcd(r, pq) = 1, one can see that Aut(G3) ∼= Aut(Zr) × Aut(Fp,q). This
implies that for every α ∈ Aut(G3), we have α(c) = ci(1 ≤ i ≤ r − 1).
On the other hand, α|Fp,q

∈ Aut(Fp,q) is as given in Theorem 3.4. In
other words, all automorphisms of Aut(G3) are as follows:

α :

 a→ at
−1

b→ b
c→ cf

, β :

 a→ a
b→ ba
c→ cf

,

where t is an element of order p − 1 in Z∗p, t−1 is it’s inverse and f ∈
{1, 2, · · · , r − 1}. This implies that

Aut(G3) = Zr−1 × Fp,p−1.

Suppose there is an automorphism θ ∈ Aut(G3) where θ(cibjak) =

(cibjak)−1. Hence, cifbjakt
−1

= c−ia−kb−j or cif (ba)jak = c−ia−kb−j

which implies that j = 0, a contradiction. This yields that the action of
Aut(G3, S) on S is not transitive. Thus, necessarily θ(cibjak) = cxbman.

In other words, cif (ba)jak = cxbman or cifbjakt
−1

= cxbman. So, by
these conditions, we can conclude that if ≡ x(mod r), j = m and either
k ≡ nt(mod p) or uj−1 + · · ·+ u+ 1 + k ≡ n(mod p). Thus

S ⊆ {cibjak, (cibjak)−1, cxbjan, (cxbjan)−1},
where k ≡ nt(mod p) or uj−1 + · · ·+ u+ 1 + k ≡ n(mod p).

• For G4 = Zq × Fp,r(r|p− 1) and G5 = Zp × Fq,r(r|q − 1) the conditions
are similar to the last case.
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• Let Γ = Cay(G6, S6) and Γ is tetravalent normal edge-transitive, ac-
cording to Corollary 2.2, its valency is even. Hence, a minimal gen-
erating normal symmetric subset of G6 has four elements. Suppose
S = {cibjak, (cibjak)−1, cxblas, (cxblas)−1}, where 1 ≤ i, x ≤ r − 1,
1 ≤ j, l ≤ p− 1 and 1 ≤ s, k ≤ q − 1. First we show that i = x = 1. In
[6], it is proved that for k ≥ 1, we have

Aut(G5+i) = {α : α(a) = az, α(b) = bg, α(c) = cbeah(u−1)},

where 1 ≤ g ≤ q − 1, 0 ≤ h ≤ p − 1, 0 ≤ e ≤ q − 1, 1 ≤ z ≤ p − 1 and
u is the p-th primitive root of unity. It is not difficult to see that then
i = x. Suppose now that there is an automorphism α ∈ Aut(G6) such
that α(cibjak) = cxblas, where

α :

 a→ am

b→ bn

c→ cbyat
. (2)

This implies that α(cibjak) = (cbyat)ibyjakt = ciblas. On the other
hand,

cbyat · · ·︸︷︷︸
i times

cbyat = ci (3)

and so ci
2

bθaγ = ci, where 1 ≤ θ ≤ q − 1, 1 ≤ γ ≤ p − 1 are func-

tions of variables u, v. It follows that ci
2−i = 1 and hence i = 1. But

{cibjak, (cibjak)−1, cxblas, (cxblas)−1} generates G6 if j = k = 0 and so
Γ = Cay(G6, S) is tetravalent normal edge-transitive if

S = {c, c−1, calbs, (calbs)−1},

where 1 ≤ l ≤ p− 1 and 1 ≤ s ≤ q − 1. So, we proved the following theorem.

Theorem 4.1. Let G1, · · ·Gd+5(1 ≤ d ≤ r− 1) be all groups of order pqr where
p > q > r > 2 are prime numbers and 1 ≤ f ≤ r − 1. The Cayley graph
Γi = Cay(Gi, S) is tetravalent normal edge-transitive if and only if

(1) G1 = Zpqr and S = {x, y, x−1, y−1}, where G1 = 〈x, y〉,
(2) G2 = Fp,qr(qr|p− 1) and S = {biam, bian, (biam)−1, (bian)−1},
(3) G3 = Zr×Fp,q(q|p−1) and S = {cibjak, (cibjak)−1, cxbjan, (cxbjan)−1},

where if ≡ x(mod r), j = m and either k ≡ nt(mod r) or uj−1 + · · ·+
u+ 1 + k ≡ n(mod r),

(4) G4 = Zp×Fq,r(r|q−1) and S = {cibjak, (cibjak)−1, cxbjan, (cxbjan)−1},
where if ≡ x(mod p), j = m and either k ≡ nt(mod p) or uj−1 + · · ·+
u+ 1 + k ≡ n(mod p),

(5) G5 = Zq×Fp,r(r|p−1) and S = {cibjak, (cibjak)−1, cxbjan, (cxbjan)−1},
where if ≡ x(mod q), j = m and either k ≡ nt(mod q) or uj−1 + · · ·+
u+ 1 + k ≡ n(mod q),
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(6) Gd+5 = 〈a, b, c : ap = bq = cr = 1, ab = ba, c−1bc = bu, c−1ac = av
i〉,

where r|p− 1, q − 1, o(u) = r in Z∗q and o(v) = r in Z∗p (1 ≤ d ≤ r − 1)

and S = {c, c−1, calbs, (calbs)−1}, where 1 ≤ l ≤ p−1 and 1 ≤ s ≤ q−1.

Theorem 4.2. Let G = Fp,qr, then Γ = Cay(G,S) is hexavalent normal edge-
transitive if and only if

S = {biam, bian, biao, (biam)−1, (bian)−1, (biao)−1},
where 1 ≤ m,n, o ≤ p and 1 ≤ i ≤ q.

Proof. Let θ ∈ Aut(G2) such that θ(a) = af and θ(b) = bah, where 1 ≤ f ≤
p − 1 and 0 ≤ h ≤ p − 1. Let T = {biaj , bman, boas}, if θ(biaj) = bman,

then (bah)iajf = biav
ih+vi−1h+...+h+jf = bman and so i = m. Similarly, if

θ(bman) = boas, then m = o. On the other hand, the following relations hold:

vih+ vi−1h+ ...+ h+ jf ≡ n(mod p)⇒ (j − n)f ≡ (n− s)(mod p),
vih+ vi−1h+ ...+ h+ nf ≡ s(mod p)⇒ (n− s)f ≡ (s− j)(mod p),
vih+ vi−1h+ ...+ h+ sf ≡ j(mod p)⇒ (s− j)f ≡ (j − n)(mod p).

In other words, if f3 ≡ 1(mod p), then Aut(G2, S) has two orbits on S. Here,
we show that there is no α ∈ Aut(G) which α(biaj) = a−mb−i. Suppose in the

contrary that there is such α, then biav
ih+vi−1h+...+h+jf = bqr−ia−mv

qr−i

and
thus −2i ≡ 0 (mod qr), a contradiction. �

Theorem 4.3. Let G3 = Zr × Fp,q, then Γ = Cay(G,S) is hexavalent normal
edge-transitive if and only if

S = {cibjak, (cibjak)−1, cxbjad, (cxbjad)−1, csbjah, (csbjah)−1}.

Proof. In the proof of Theorem 4.1, we showed that Aut(G3) ∼= Zr−1 × Fp,p−1.
Let S = {cibjak, (cibjak)−1, cxblad, (cxblad)−1, csbgah, (csbgah)−1} and suppose

θ is an automorphism onAut(G3) such that θ(cibjak) = cxblad, then cfibjakt
−1

=
cxblad. Hence, if ≡ x(mod r), j ≡ l(mod g) and kt−1 ≡ d(mod p). Clearly,
if θ(cxblad) = csbgah, then l = g = h. On the other hand, if ≡ x(mod r),
xf ≡ s(mod r) and sf ≡ i(mod r) yields that f3 ≡ 1(mod r). Let A = cibjak,
B = cxbjad and C = csbjah, by a similar way, we can prove that t3 ≡ 1(mod p).
If f3 ≡ 1(mod r) and u + j − 1 ≡ 0(mod p), then the action Aut(G3, S) on S
has two orbits T, T−1. It should be noted that there is no automorphisms α or
β ∈ Aut(G3) which α(A) = A−1 or B−1 and β(A) = A−1 or B−1, because in
the other cases j = 0, a contradiction. Similarly, we can prove that there is no
automorphism α or β with α(A) = B−1 or β(A) = B−1. This completes the
proof. �

Theorem 4.4. Let G = Gi+5, then Cay(G,S) is hexavalent normal edge-
transitive if and only if

S = {cibjak, (cibjak)−1, ciblas, (ciblas)−1, cibman, (cibman)−1}.
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Proof. Let α ∈ Aut(G) and α(S) = S, where

S = {cibjak, (cibjak)−1, cxblas, (cxblas)−1, cobman, (cobman)−1}.
According to Theorem 4.1, i = 1. We have, e+gk ≡ s(mod q), e+gs ≡ m(mod q)
and e + gm ≡ k(mod q) which results that g3 ≡ 1(mod q). On the other hand,
h(u − 1) + jf ≡ l(mod p), h(u − 1) + lf ≡ n(mod p) and h(u − 1) + mf ≡
j(mod p) which verify that f3 ≡ 1(modp). In addition there is no α ∈ Aut(G)
such that α(cbjak) = (cbjak). If in the contrary, there exist such an α, then

cbig+lakf+h(u−1) = cr−1b−ju
r−1

a−kv
i(r−1)

and so r− 2 ≡ 0(mod r). By a similar
way, it can be shown that there is no α ∈ Aut(G) with α(cbjak) = (cblas)−1 and
so S has two orbits under the action of Aut(G,S). This completes the proof. �
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