DOI QR코드

DOI QR Code

Ternary Bloom Filter Improving Counting Bloom Filter

카운팅 블룸필터를 개선하는 터너리 블룸필터

  • Byun, Hayoung (Department of Electronic and Electrical Engineering, Ewha Womans University) ;
  • Lee, Jungwon (Department of Electronic and Electrical Engineering, Ewha Womans University) ;
  • Lim, Hyesook (Department of Electronic and Electrical Engineering, Ewha Womans University)
  • 변하영 (이화여자대학교 전자전기공학과) ;
  • 이정원 (이화여자대학교 전자전기공학과) ;
  • 임혜숙 (이화여자대학교 전자전기공학과)
  • Received : 2016.09.22
  • Accepted : 2016.12.13
  • Published : 2017.01.25

Abstract

Counting Bloom filters (CBFs) have been popularly used in many network algorithms and applications for the membership queries of dynamic sets, since CBFs can provide delete operations, which are not provided in a standard 1-bit vector Bloom filter. However, because of the counting functions, a CBF can have overflows and accordingly false negatives. CBFs composed of 4-bit counters are generally used, but the 4-bit CBF wastes memory spaces by allocating 4 bits for every counter. In this paper, we propose a simple alternative of a 4-bit CBF named ternary Bloom filter (TBF). In the proposed TBF structure, if two or more elements are mapped to a counter in programming, the counters are not used for insertion or deletion operations any more. When the TBF consumes the same amount of memory space as a 4-bit CBF, it is shown through simulation that the TBF provides a better false positive rate than the CBF as well as the TBF does not generate false negatives.

카운팅 블룸필터는 표준 블룸필터에서 제공하지 못하는 삭제 기능을 제공하여, 동적 집합에 대한 멤버쉽 쿼리를 허용하므로, 다양한 네트워크 알고리즘과 어플리케이션에 널리 사용된다. 그러나 카운팅 기능으로 인해 표준 블룸필터에는 없었던 오버플로우가 발생할 수 있고 이에 따라 거짓 음성이 발생할 수 있다. 4-비트 카운팅 블룸필터가 일반적으로 많이 사용되는데, 이는 모든 카운터에 4 비트를 할당하므로 메모리를 낭비한다는 단점이 있다. 거짓 음성의 가능성을 제거하고 메모리 사용량을 줄이기 위해서, 본 논문은 카운팅 블룸필터의 변형인 터너리 블룸필터(Ternary Bloom filter)를 제안한다. TBF는 하나의 카운터에 2개 이상의 원소가 대응될 경우, 더 이상의 삽입이나 삭제가 불가능하게 정한 구조이다. 실험을 통해 4-비트 카운팅 블룸필터와 같은 크기의 메모리 사용 시 TBF는 거짓 음성을 발생시키지 않을 뿐 아니라 거짓 양성률에 있어서도 상당한 우위를 보임을 확인하였다.

Keywords

References

  1. B. Bloom, "Space/time Tradeoffs in Hash Coding with Allowable Errors," Communications of the ACM, Vol.13, No.7, pp. 422-426, Jul. 1970. https://doi.org/10.1145/362686.362692
  2. F. Bonomi, M. Mitzenmacher, R. Panigrah, S. Singh, and G. Varghese, "Beyond Bloom Filters: From Approximate Membership Checks to Approximate State Machines," in Proc. ACM SIGCOMM, pp. 315-326, Pisa, Italy, Sep. 2006.
  3. H. Song, F. Hao, M. Kodialam, and T. V. Lakshman, "IPv6 Lookups Using Distributed and Load Balanced Bloom Filters for 100 Gbps Core Router Line Cards," in Proc. IEEE INFOCOM, pp. 2518-2526, Rio, Brazil, Apr. 2009.
  4. O. Rottenstreich and I. Keslassy, "The Bloom Paradox: When Not to Use a Bloom Filter," IEEE/ACM Trans. on Networking, Vol. 23, No. 3, pp. 703-716, Jun. 2015. https://doi.org/10.1109/TNET.2014.2306060
  5. S. Dharmapurikar, P. Krishnamurthy, and D. E. Taylor, "Longest Prefix Matching Using Bloom Filters," IEEE/ACM Trans. on Networking, Vol. 14, No. 2, pp. 397-409, Apr. 2006. https://doi.org/10.1109/TNET.2006.872576
  6. H. Lim, K. Lim, N. Lee, and K. Park, "On Adding Bloom Filters to Longest Prefix Matching Algorithms," IEEE Trans. on Computers, Vol. 63, No. 2, pp. 411-423, Feb. 2014. https://doi.org/10.1109/TC.2012.193
  7. J. Mun, and H. Lim, "New Approach for Efficient IP Address Lookup Using a Bloom Filter in Trie-Based Algorithms," IEEE Trans. on Computers, Vol. 65, No.5, pp.1558-1565, May. 2016. https://doi.org/10.1109/TC.2015.2444850
  8. A. Broder and M. Mitzenmacher, "Network Applications of Bloom Filters: A Survey," Internet Mathematics, Vol. 1, No.4, pp. 485-509, 2004. https://doi.org/10.1080/15427951.2004.10129096
  9. S. Tarkoma, C. E. Rothenberg, and E. Lagerspetz, "Theory and Practice of Bloom Filters for Distributed Systems," IEEE Communications Surveys and Tutorials, Vol. 14, No. 1, pp. 131-155, First Quarter, 2012. https://doi.org/10.1109/SURV.2011.031611.00024
  10. L. Fan, P. Cao, J. Almeida, and A. Broder, "Summary Cache: A Scalable Wide-Area Web Cache Sharing Protocol," IEEE/ACM Trans. on Networking, Vol. 8, No.3, pp. 281-293, Jun. 2000. https://doi.org/10.1109/90.851975
  11. D. Ficara, A. Di Pietro, S. Giordano, G. Procissi, and F. Vitucci, "Enhancing Counting Bloom Filters through Huffman-Ccoded Multilayer Structures," IEEE/ACM Trans. on Networking, Vol. 18, No. 6, pp. 1977-1987, Dec. 2010. https://doi.org/10.1109/TNET.2010.2055243
  12. Y. Lu, A. Montanari, B. Prabhakar, S. Dharmapurikar, and A. Kabbani, "Counter Braids: A Novel Counter Architecture for Per-Flow Measurement," in Proc. ACM SIGMETRICS 2008, pp. 121-132, Annapolis, USA, 2008.
  13. F. Bonomi, M. Mitzenmacher, R. Panigrahy, S. Singh, and G. Varghese, "An Improved Construction for Counting Bloom Filters," in Proc. ESA, pp. 684-695, Zurich, Switzerland, Sep. 2006.
  14. O. Rottenstreich, Y. Kanizo, and I. Keslassy, "The Variable-Increment Counting Bloom Filter," IEEE/ACM Trans. on Networking, Vol. 22, No. 4, pp. 1092-1105, Aug. 2014. https://doi.org/10.1109/TNET.2013.2272604
  15. K. Huang, J. Zhang, D. Zhang, G. Xie, K. Salamatian, A. Liu, and W. Li, "A multi-partitioning approach to building fast and accurate counting bloom filters," IEEE IPDPS, pp. 1159-1170, Boston, USA, May. 2013.
  16. C. Rothenberg, C. Macapuna, F. Verdi, and M. Magalhaes, "The Deletable Bloom Filter: A New Member of the Bloom Family," IEEE Communications Letters, Vol. 14, No. 6, pp. 557-559, Jun. 2010. https://doi.org/10.1109/LCOMM.2010.06.100344
  17. D. Ficara, A. Di Pietro, S. Giordano, G. Procissi, and F. Vitucci, "Enhancing counting Bloom filters through Huffman-coded multilayer structures," IEEE/ACM Trans. on Networking, Vol. 18, No. 6, pp. 1977-1987, Dec. 2010. https://doi.org/10.1109/TNET.2010.2055243
  18. L. Li, B. Wang, and J. Lan, "A variable length counting Bloom filter," in Proc. 2nd Int. Conf. on ICCET, pp. 504-508, Kuala Lumpur, Malaysia, Apr. 2010.
  19. N. Hua, H. Zhao, B. Lin, and J. Xu, "Rank-indexed hashing: A compact construction of Bloom filters and variants," in IEEE ICNP, pp. 73-82, Orlando, USA, Oct. 2008.
  20. Alexa the Web Information Company, http://www.alexa.com/

Cited by

  1. 페라이트를 이용한 자기장 무선전력전송 안테나 vol.54, pp.7, 2017, https://doi.org/10.5573/ieie.2017.54.7.49