DOI QR코드

DOI QR Code

A Real-time Multicasting Protocol using Time Deadline in Wireless Sensor Networks

무선 센서 망에서 제한시간을 이용한 실시간 멀티캐스팅 프로토콜

  • Received : 2016.08.16
  • Accepted : 2016.10.17
  • Published : 2017.01.15

Abstract

Real-time multicasting is a packet transmission scheme ensuring that multiple destinations receive a packet within the desired time line. In wireless sensor networks, a packet can be delivered to a limited distance under a given deadline, since the end-to-end delay tends to be proportional to the end-to-end physical distance. Existing real-time multicasting protocols select the distance between the source and the furthest destination as the distance limitation and construct a multicasting tree guaranteeing delivery paths to each destination within the distance limitation. However, the protocols might lead to real-time delivery failures and energy efficiency degradation due to the fixed distance limitation. In this study, we proposed a real-time multicasting protocol using time deadline. The proposed protocol obtains the maximum transmittable distance with a given time deadline and subsequently constructs a multicasting tree using the maximum transmittable distance. The form of the multicasting tree varies according to the given time deadline to trade off the energy efficiency against the real-time delivery success ratio. The simulation results showed that the proposed scheme is superior to the existing protocols in terms of energy efficiency and real-time delivery success ratio under various time deadlines.

실시간 멀티캐스팅은 소스가 발생시킨 패킷을 제한시간 내에 다수의 목적지로 전달하는 방법이다. 무선 센서 망에서는 종단간 지연이 거리에 비례하므로, 제한시간 안에 전송가능한 최대거리가 존재한다. 기존 실시간 멀티캐스팅 방안은 고정된 최대거리를 정하고, 목적지들로의 패킷 전달 경로가 이를 넘지않도록 하여 실시간 멀티캐스팅을 달성했다. 하지만, 제한시간이 가변적인 환경에서, 기존방안은 고정된 제한거리로 인해 실시간 전송실패나, 에너지효율 저하 등의 문제가 발생한다. 이 문제를 해결하기 위해, 본 논문은 제한시간을 이용한 실시간 멀티캐스팅 프로토콜을 제안한다. 제안방안은 제한시간을 이용해 최대 전송가능거리를 계산하고, 이를 이용해 멀티캐스팅 경로를 구성한다. 제안방안이 구성하는 멀티캐스팅 경로는 제한시간이 짧은 경우 실시간성에, 긴 경우 에너지효율성에 초점을 맞추어 구성된다. 실험결과는 제안방안이 기존방안보다 실시간전송 성공률과 에너지효율성 면에서 더 나은 성능을 달성할 수 있음을 보인다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, "A Survey on Sensor Networks," IEEE Comm. Mag., Vol. 40, No. 8, pp. 102-114, Aug. 2002. https://doi.org/10.1109/MCOM.2002.1024422
  2. J. A. Sanchez, P. M. Ruiz, J. Liu, and I. Stojmenovic, "Bandwidth-Efficient Geographic Multicast Routing Protocol for Wireless Sensor Networks," IEEE Sensors Journal, Vol. 7, No. 5, pp. 627-636, 2007. https://doi.org/10.1109/JSEN.2007.894149
  3. S. Wu and K. S. Candan, "Demand-scalable geographic multicasting in wireless sensor networks," Computer Communications, Vol. 30, Iss. 14-15, pp. 2931-2953, 2007. https://doi.org/10.1016/j.comcom.2007.05.029
  4. H. Park, J. Lee, S. Park, S. Oh, and S.-H. Kim, "Multicast Protocol for Real-Time Data Dissemination in Wireless Sensor Networks," IEEE Communications Letters, Vol. 15, No. 12, pp. 1291-1293, 2011. https://doi.org/10.1109/LCOMM.2011.102611.110995
  5. J. Gao, J. Wang, and W. Wang, "Energy-efficient Multicast Protocol for Real-time Wireless Sensor Networks," Proc. IEEE HPCC_EUC 2013, pp. 979-984, 2013.
  6. T. He, J. A. Stankovic, C. Lu, and T. F. Abdelzaher, "A Spatiotemporal Communication Protocol for Wireless Sensor Networks," IEEE Transactions on Parallel and Distributed Systems, Vol. 16, No. 10, pp. 995-1006, 2005. https://doi.org/10.1109/TPDS.2005.116
  7. D. Liu, I. Stojmenovic, and X. Jia, "A scalable quorum based location service in ad hoc and sensor networks," Proc. IEEE Int. Conf. Mobile Ad-Hoc and Sensor System, Oct. 2006.
  8. M.-S. Jin, H. Park, E. Lee, T. Kim, J. Lee, S.-H. Kim, "An Energy Efficient Communication Protocol using Location Information in Wireless Sensor Networks," Journal of KISS : Information Networking, Vol. 36, No. 4, pp. 322-329, 2009.
  9. B. Karp and H. T. Kung, "GPSR: Greedy Perimeter Stateless Routing for Wireless Networks," Proc. of MOBICOM 2000, Boston, MA, USA, 2000, pp. 243-254.
  10. E. Lee, S. Park, M.-S. Jin, H. Park, T. Kim, S.-H. Kim, "On-demand Geographic Routing Protocol in Wireless Sensor Networks," Journal of KIISE : Computing Practices and Letters, Vol. 15, No. 7, pp. 495-499, 2009.
  11. D. Chen, J. Deng, and P. Varshney, "Selection of a Forwarding Area for Contention-Based Geographic Forwarding in Wireless Multi-Hop Networks," IEEE Trans. Veh. Technol., Vol. 56, No. 5, pp. 3111-3122, 2007. https://doi.org/10.1109/TVT.2007.900371
  12. MathWorks, Matlab. [Online]. Available: http://www. mathworks.co.kr/products/matlab. Retrieved on Nov. 10th, 2016.