DOI QR코드

DOI QR Code

Data Processing System for the Geostationary Ocean Color Imager (GOCI)

천리안해양관측위성을 위한 자료 처리 시스템

  • 양현 (한국해양과학기술원 ICT융합연구단) ;
  • 윤석 (한국해양과학기술원 해양위성센터 기술원) ;
  • 한희정 (한국해양과학기술원 해양위성센터) ;
  • 허재무 (한국해양과학기술원 해양위성센터 연구사업인력) ;
  • 박영제 (한국해양과학기술원 해양위성센터)
  • Received : 2016.10.07
  • Accepted : 2016.11.09
  • Published : 2017.01.15

Abstract

The Geostationary Ocean Color Imager (GOCI), the world's first ocean color sensor operated in a geostationary orbit, can be utilized to mitigate damages by monitoring marine disasters in real time such as red tides, green algae, sargassum, cold pools, typhoons, and so on. In this paper, we described a methodology and procedure for processing GOCI data in order to maximize its utilization potential. The GOCI data processing procedure is divided into data reception, data processing, and data distribution. The kinds of GOCI data are classified as raw, level 1, and level 2. "Raw" refers to an unstructured data type immediately generated after reception by satellite communications. Level 1 is defined as a radiance data type of two dimensions, generated after radiometric and geometric corrections for raw data. Level 2 indicates an ocean color data type from level-1 data using ocean color algorithms.

세계 최초의 정지궤도 해양관측위성 센서인 천리안해양관측위성(Geostationary Ocean Color Imager; GOCI)은 적조, 녹조, 모자반, 냉수대, 태풍 등의 해양재해를 실시간으로 모니터링하여 피해를 최소화하는데 활용될 수 있다. 이와 같은 활용성을 극대화하기 위해, 이 논문에서는 천리안해양관측위성의 자료처리 방법 및 절차에 관하여 기술하고 있다. 천리안해양관측위성의 자료처리는 크게 수신, 처리, 저장, 배포로 구분되며, 자료의 종류는 Raw, Level 1, Level 2 등으로 나눠진다. Raw 자료는 위성으로부터 수신한 직후의 자료로 구조화되기 이전의 자료를 의미하고, Level 1 자료는 방사보정 및 기하보정을 통하여 2차원으로 구조화한 반사도 자료를 의미하며, Level 2 자료는 Level 1 반사도 자료에 다양한 해색 알고리즘을 적용하여 엽록소농도, 부유물질농도 등을 추출한 해색자료를 의미한다.

Keywords

Acknowledgement

Grant : 정지궤도 해양위성활용연구, 해양탑재체 통합자료처리시스템 개발, 무인 해양 정보 수집 시스템 설계

Supported by : 해양수산부, 한국해양과학기술원

References

  1. J. H. Ryu, H. J. Han, S. Cho, Y. J. Park, and Y. H. Ahn, "Overview of geostationary ocean color imager (GOCI) and GOCI data processing system (GDPS)," Ocean Science Journal, Vol. 47, pp. 223-233, 2012. https://doi.org/10.1007/s12601-012-0024-4
  2. H. Yang, J. K. Choi, Y. J. Park, H. J. Han, and J. H. Ryu, "Application of the Geostationary Ocean Color Imager (GOCI) to estimates of ocean surface currents," Journal of Geophysical Research: Oceans, Vol. 119, No. 6, pp. 3988-4000, 2014. https://doi.org/10.1002/2014JC009981
  3. H. Yang, E. Oh, J. K. Choi, Y. J. Park and H. J. Han, "Application of Geostationary Ocean Color Imager Data to the extraction of ocean fronts," Remote Sensing Letters, Vol. 7, No. 5, pp. 456-465, 2016. https://doi.org/10.1080/2150704X.2016.1149249
  4. W. A. Hovis, D. K. Clark, F. Anderson, R. W. Austin, W. H. Wilson, E. T. Baker, D. Ball , H. R. Gordon, J. L. Mueller, Elsayed SZ, Sturm B, Wrigley RC, and Yentsch CS, "Nimbus-7 Coastal Zone Color Scanner: System Description and Initial Imagery," Science, Vol. 210, pp. 60-63, 1980. https://doi.org/10.1126/science.210.4465.60
  5. C. R. McClain, G. C. Feldman, and S. B. Hooker, "An overview of the SeaWiFS project and strategies for producing a climate research quality global ocean bio-optical time series," Topical Studies in Oceanography, Vol. 51, No. 1-3, pp. 5-42, 2004. https://doi.org/10.1016/j.dsr2.2003.11.001
  6. G. Fu, K. Settle, and C. R. McClain, "SeaDAS: The SeaWiFS Data Analysis System," Proc of the Ocean Remote Sensing Conference, pp. 73-77, 1998.
  7. V. Salomonson, W. L. Barnes, P. W. Maymon, and H. E. Montgomery, "MODIS : Advanced Facility Instrument for Studies of the Earth as a System," IEEE Transactions on Geoscience and Remote Sensing, Vol. 27, No. 2, pp. 145-153, 1990.
  8. H. C. Welsch, H. Swenson, S. A. Cota, F. DeLuccia J. M. Haas, C. Schueler, R. M. Durham, J. E. Clement, P. E. Ardanuy, "VIIRS (Visible Infrared Imager Radiometer Suite): a next-generation operational environmental sensor for NPOESS," IEEE Geoscience and Remote Sensing Symposium, 2001.
  9. P. Y. Deschamps, F. M. Breon, M. Leroy, A. Podaire, A. Bricaud, J. C. Buriez, and G. Seze, "The POLDER mission: instrument characteristics and scientific objectives," IEEE Transactions on Geoscience and Remote Sensing, Vol. 32, No. 3, pp. 598-615, 1994. https://doi.org/10.1109/36.297978
  10. M. Rast, J. L. Beazy, and S. Bruzzi, "The ESA Medium Resolution Imaging Spectrometer MERIS-a review of the instrument and its mission," International Journal of Remote Sensing, Vol. 20, No. 9, pp. 1681-1702, 1999. https://doi.org/10.1080/014311699212416
  11. N. Fomferra and C. Brockmann, "BEAM - The ENVISAT MERIS and (A)ATSR toolbox," Proc. of the MERIS (A)ATSR Workshop, pp. 1-3, 2005.
  12. H. Kawamura, "OCTS mission overview," Journal of Oceanography, Vol. 54, pp. 383-399, 1998. https://doi.org/10.1007/BF02742442
  13. F. Sakaida, K. Hosoda, M. Moriyama, H. Murakami, A. Mukaida, and H. Kawamura, "Sea surface temperature observation by Global Imager (GLI)/ ADEOS-II: Algorithm and accuracy of the product," Journal of Oceanography, Vol. 62, No. 3, pp. 311-319, 2006. https://doi.org/10.1007/s10872-006-0056-4
  14. H. Yang, E. Oh, T.H. Han, H.J. Han, and J.K. Choi, "An Efficient Data Processing Method to Improve the Geostationary Ocean Color Imager (GOCI) Data Service," Korean Journal of Remote Sensing, Vol. 30, No. 1, pp. 137-147, 2014. https://doi.org/10.7780/kjrs.2014.30.1.11
  15. H. Yang, M. Kim, Y.J. Park, S.S. Bae and H.J. Han, "Marine Disaster Detection Using the Geostationary Ocean Color Imager (GOCI)," International Journal of u- and e-Service, Science and Technology, Vol. 9, No. 1, pp. 129-138, 2016.
  16. H. J. Han, H. Yang, J. M. Heo, and Y. Park "System Development of Ground Segment for GOCI-II," Proc. of the KIISE Korea Computer Congress 2016, pp. 18-19, 2016.