과제정보
연구 과제 주관 기관 : Japan Society for the Promotion of Science
참고문헌
- Altuhafi, F.N. and Coop, M.R. (2011), "Changes to particle characteristics associated with the compression of sands", Geotechnique, 61(6), 459-471. https://doi.org/10.1680/geot.9.P.114
- Altuhafi, F.N., Baudet, B.A. and Sammonds, P. (2010), "The mechanics of subglacial sediment: an example of new "transitional" behaviour", Can. Geotech. J., 47(7), 775-790. https://doi.org/10.1139/T09-136
- Consoli, N.C., Casagrande, M.D. and Coop, M.R. (2005), "Effect of Fiber Reinforcement on the Isotropic Compression Behavior of a Sand", J. Geotech. Geoenviron. Eng., 131(11), 1434-1436. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:11(1434)
- Coop, M.R. (1990), "The mechanics of uncemented carbonate sands", Geotechnique, 40(4), 607-626. https://doi.org/10.1680/geot.1990.40.4.607
- Coop, M.R. and Atkinson, J.H. (1993), "The mechanics of cemented carbonate sands", Geotechnique, 43(1), 53-67. https://doi.org/10.1680/geot.1993.43.1.53
- Coop, M.R., Sorensen, K.K., Freitas, T.B. and Georgoutsos, G. (2004), "Particle breakage during shearing of a carbonate sand", Geotechnique, 54(3), 157-164. https://doi.org/10.1680/geot.2004.54.3.157
- De Souza, J.M. (1958), "Compressibility of sand at high pressure", Massachusetts Institute of Technology, Cambridge, pp. 63-64.
- Einav, I. (2007), "Breakage mechanics-Part I: Theory", J. Mech. Phys. Solids., 55(6), 1274-1297. https://doi.org/10.1016/j.jmps.2006.11.003
- Ferreira, P.M.V. and Bica, A.V.D. (2006), "Problems in identifying the effects of structure and critical state in a soil with a transitional behaviour", Geotechnique, 56(7), 445-454. https://doi.org/10.1680/geot.2006.56.7.445
- Fujii, T., Nakamizu, M., Tsuji, Y., Kawasaki, M. and Ochiai, K. (2005), "Modes of occurrence and accumulation mechanism of methane hydrate-result of MET1 exploration test wells "tokai-oki to kumanonada", Proceedings of the 5th International Conference on Gas Hydrates, Trondheim, Norway, June, pp. 974-979.
- Hagerty, M.M., Hite, D.R., Ullrich, C.R. and Hagerty, D.J. (1993), "One-Dimensional High-Pressure Compression of Granular Media", J. Geotech. Eng., 119(7), 1-18. https://doi.org/10.1061/(ASCE)0733-9410(1993)119:1(1)
- Hardin, B.O. (1985), "Crushing of soil particles", J. Geotech. Eng., 111(10), 1177-1192. https://doi.org/10.1061/(ASCE)0733-9410(1985)111:10(1177)
- Hyodo, M., Hyde, A.F.L., Aramaki, N. and Nakata, Y. (2002), "Undrained monotonic and cyclic shear behaviour of sand under low and high confining stresses", Soils Found., 42(3), 63-76. https://doi.org/10.3208/sandf.42.3_63
- Hyodo, M., Nakata, Y., Yoshimoto, N. and Ebinuma, T. (2005), "Basic research on the mechanical behavior of methane hydrate-sediments mixture", Soils Found., 45(1), 75-85. https://doi.org/10.3208/sandf.45.75
- Hyodo, M., Yoneda, J., Yoshimoto, N. and Nakata, Y. (2013), "Mechanical and dissociation properties of methane hydrate-bearing sand in deep seabed", Soils Found., 53(2), 299-314. https://doi.org/10.1016/j.sandf.2013.02.010
- Hyodo, M., Wu, Y., Aramaki, N. and Nakata, Y. (2017), "Undrained monotonic and cyclic shear response and particle crushing of silica sand at low and high pressures", Can. Geotech. J. DOI: 10.1139/cgj-2016-0212
- Lade, P.V. and Bopp, P.A. (2005), "Relative density effects on drained sand behavior at high pressures", Soils Found., 45(1), 1-13. https://doi.org/10.3208/sandf.45.1
- Martins, F.B., Bressani, L.A., Coop, M.R. and Bica, A.V.D. (2001), "Some aspects of the compressibility behaviour of a clayey sand", Can. Geotech. J., 38(6), 1177-1186. https://doi.org/10.1139/t01-048
- Mesri, G. and Vardhanabhuti, B. (2009), "Compression of granular materials", Can. Geotech. J., 46(4), 369-392. https://doi.org/10.1139/T08-123
- METI (The Ministry of Economy, Trade and Industry, Japan) (2005), Mid-term evaluation report of the Japan's Methane Hydrate R&D Program; Tokyo, Japan. [In Japanese]
- MH21 Research Consortium (2008), Phase 1 Comprehensive Report of Research Results; Tokyo, Japan.
- Minagawa, H., Nishikawa, Y., Ikeda, I., Miyazaki, K., Takahara, N., Sakamoto, Y., Komai, T. and Nairta, H. (2008), "Characterization of sand sediment by pore size distribution and permeability using proton nuclear magnetic resonance measurement", J. Geophys. Res. Solid Earth., 113(B7), 1-9.
- Mitchell, J.K. and Soga, K. (2005), Fundamentals of Soil Behavior, (3rd Edition), Wiley.
- Miura, N., Murata, H. and Yasufuku, N. (1984), "Stress-strain characteristics of sand in a particle-crushing region", Soils Found., 24(1), 77-89. https://doi.org/10.3208/sandf1972.24.77
- Miyazaki, K., Masui, A., Sakamoto, Y., Aoki, K., Tenma, N. and Yamaguchi, T. (2011), "Triaxial compressive properties of artificial methane-hydrate-bearing sediment", J. Geophys. Res. Solid Earth., 116(B6), 1-1.
- Nocilla, A., Coop, M.R. and Colleselli, F. (2006), "The mechanics of an Italian silt: an example of "transitional" behaviour", Geotechnique, 56(4), 261-271. https://doi.org/10.1680/geot.2006.56.4.261
- Pestana, J.M. and Whittle, A.J. (1995), "Compression model for cohesionless soils", Geotechnique, 45(4), 611-631. https://doi.org/10.1680/geot.1995.45.4.611
- Shipton, B. and Coop, M.R. (2012), "On the compression behaviour of reconstituted soils", Soils Found., 52(4), 668-681. https://doi.org/10.1016/j.sandf.2012.07.008
- Shipton, B. and Coop, M.R. (2015), "Transitional behaviour in sands with plastic and non-plastic fines", Soils Found., 55(1), 1-16. https://doi.org/10.1016/j.sandf.2014.12.001
- Silva dos Santos, A.P., Consoli, N.C., Heineck, K.S. and Coop, M.R. (2009), "High-pressure isotropic compression tests on fiber-reinforced cemented sand", J. Geotech. Geoenviron. Eng., 136(6), 885-890. https://doi.org/10.1061/(ASCE)GT.1943-5606.000030
- Suzuki, K., Ebinuma, T. and Narita, H. (2009), "Features of methane hydrate-bearing sandy-sediments of the forearc basin along the Nankai Trough: Effect on methane hydrate-accumulating mechanism in turbidite", J. Geogr. (Chigaku Zasshi), 118(5), 899-912. [In Japanese] https://doi.org/10.5026/jgeography.118.899
- Wu, Y. and Yamamoto, H. (2015), "Numerical investigation on the reference crushing stress of granular materials in triaxial compression test", Period. Polytech. Civil Eng., 59(4), 465-474. https://doi.org/10.3311/PPci.7694
- Zhang, X.Y. and Baudet, B.A. (2013), "Particle breakage in gap-graded soil", Geotechnique Lett., 3(2), 72-77. https://doi.org/10.1680/geolett.13.00022
피인용 문헌
- Influence of Fines Content on the Mechanical Behavior of Methane Hydrate-Bearing Sediments vol.122, pp.10, 2017, https://doi.org/10.1002/2017JB014154
- Experimental investigation on the mechanical properties of methane hydrate-bearing sand formed with rounded particles vol.45, 2017, https://doi.org/10.1016/j.jngse.2017.05.008
- Impact of Pore Fluid Chemistry on Fine-Grained Sediment Fabric and Compressibility vol.123, pp.7, 2018, https://doi.org/10.1029/2018JB015872
- A numerical analysis of the equivalent skeleton void ratio for silty sand vol.17, pp.1, 2019, https://doi.org/10.12989/gae.2019.17.1.019
- Laboratory experiments on the improvement of rockfill materials with composite grout vol.17, pp.3, 2019, https://doi.org/10.12989/gae.2019.17.3.307
- Compressibility and particle crushing of Krishna-Godavari Basin sediments from offshore India: Implications for gas production from deep-water gas hydrate deposits vol.108, pp.None, 2017, https://doi.org/10.1016/j.marpetgeo.2018.07.012
- Using grain size to predict engineering properties of natural sands in Pakistan vol.22, pp.2, 2017, https://doi.org/10.12989/gae.2020.22.2.165
- Factors affecting particle breakage of calcareous soil retrieved from South China Sea vol.22, pp.2, 2017, https://doi.org/10.12989/gae.2020.22.2.173
- Mechanical properties of calcareous silts in a hydraulic fill island-reef vol.39, pp.1, 2017, https://doi.org/10.1080/1064119x.2020.1748775
- Characterization of stress–dilatancy behavior for methane hydrate-bearing sediments vol.92, pp.None, 2017, https://doi.org/10.1016/j.jngse.2021.104000