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SIMPLICIAL WEDGE COMPLEXES AND PROJECTIVE

TORIC VARIETIES

Jin Hong Kim

Abstract. Let K be a fan-like simplicial sphere of dimension n− 1 such
that its associated complete fan is strongly polytopal, and let v be a vertex
of K. Let K(v) be the simplicial wedge complex obtained by applying
the simplicial wedge operation to K at v, and let v0 and v1 denote two
newly created vertices of K(v). In this paper, we show that there are
infinitely many strongly polytopal fans Σ over such K(v)’s, different from
the canonical extensions, whose projected fans Proj

vi
Σ (i = 0, 1) are also

strongly polytopal. As a consequence, it can be also shown that there are

infinitely many projective toric varieties over such K(v)’s such that toric
varieties over the underlying projected complexes KProj

vi
Σ (i = 0, 1) are

also projective.

1. Introduction and main results

There is a method of construction to obtain a new simplicial complex from
a given one, called a simplicial wedge operation, which has recently attracted
much attention in toric topology world (see, e.g., [1] and [2]). Among many
other things, it is particularly interesting because, starting from a toric mani-
fold with its associated simple convex polytope, one can construct an infinite
family of new and meaningful toric manifolds, one for each sequence of positive
integers.

In order to explain our results in more detail, we now want to briefly re-
call the construction of a simplicial wedge complex. To do so, let K be a
simplicial complex of dimension n − 1 on vertex set {v1, v2, . . . , vm}, and let
J = (j1, j2, . . . , jm) be a sequence of positive integers. A minimal non-face of
K is a sequence of vertices of K which is not a simplex of K but any proper
subset is a simplex of K. Let K(J) be a simplicial complex on j1+j2+ · · ·+jm
vertices

v11, . . . , v1j1 , v21, . . . , v2j2 , . . . , vm1, . . . , vmjm
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with the property that

{vi11, . . . , vi1ji1 , vi21, . . . , vi2ji2 , . . . , vik1, . . . , vikjik }

is a minimal non-face of K(J) if and only if {vi1 , vi2 , . . . , vik} is a minimal
non-face of K.

In order to obtain an alternative description of the simplicial complex K(J)
that is our main interest, we next recall that the link of a simplex σ in K is
the simplicial subcomplex of K given by

linkKσ = {τ ∈ K |σ ∪ τ ∈ K, σ ∩ τ = ∅},

while the join of two disjoint simplicial subcomplexes K1 and K2 is the sim-
plicial complex given by

K1 ∗K2 = {σ1 ∪ σ2 |σi ∈ Ki, i = 1, 2}.

Now, fix a vertex vi in K. Let I denote a 1-simplex whose vertices are vi1 and
vi2, and let ∂I denote the boundary complex of I consisting of two vertices vi1
and vi2. We then define a new simplicial complex K(vi), called a simplicial

wedge complex, with m+ 1 vertices

v1, v2, . . . , vi−1, vi1, vi2, vi+1, . . . , vm

by

K(vi) = (I ∗ linkK{vi}) ∪ (∂I ∗K\{vi}) .

It is easy to see that the new simplicial complex K(vi) is same as K(J) with

J = (1, . . . ,
i-th coordinate

2 , 1, . . . , 1).

By applying this construction repeatedly starting from J = (1, . . . , 1), one
can also obtain K(J) for any sequence J = (j1, . . . , jm) with positive integer
entries (see [1], Section 2 for more details). Let K be dual to the boundary
complex of a simple convex polytope P of dimension n with m facets, and let
d(J) = j1 + · · · + jm for J = (j1, . . . , jm). Then it can be shown as in [1],
Theorem 2.4 that K(J) is dual to the boundary of a simple convex polytope
P (J) of dimension d(J)−m+ n with d(J) facets.

Let K be a simplicial complex of dimension n− 1, as before. We say that K
is a simplicial sphere of dimension n− 1 if its geometric realization |K| of K is
homeomorphic to a sphere Sn−1. On the other hand, K is said to be polytopal

if there is an embedding of the geometric realization |K| into R
n which is given

by the boundary of a simplicial polytope P ∗ of dimension n.
There is also a notion between a simplicial sphere and polytopality. That

is, we say that a simplicial sphere K of dimension n− 1 is star-shaped if there
is an embedding of the geometric realization |K| of K into R

n so that there
exists a point p with the property that each ray emanating from p meets |K|
in one and only one point. In this case, p is called a kernel point. Clearly every
polytopal sphere is also star-shaped, even though the converse is not true in
general, as the Barnette sphere shows (see [6], p. 90).
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A rational fan (or simply fan) Σ of dimension n is a collection of strongly
convex rational cones in R

n such that each face of a cone and the intersection
of a finite number of cones are again in the fan. Here a cone is strongly convex

if it does not contain any non-trivial linear subspace, and is rational if every
generator of a one-dimensional cone can be taken in the integer lattice Z

n. A
rational cone is called non-singular if its generators form a part of an integral
basis of Zn, while it is called simplicial if its generators are simply linearly
independent. We can associate a simplicial complex KΣ to each simplicial fan
Σ, called the underlying simplicial complex, in such a way that vertices of KΣ

are generators of one-dimensional cones of Σ and faces of KΣ are the sets of
generators of cones of Σ. Recall also that an ordinary fan is said to be complete

if the union of all cones cover the whole space R
n. We say that a simplicial

sphere K is fan-like (or, equivalently star-shaped) if there is a complete fan
whose underlying simplicial complex is same as K. Note that a simplicial
sphere is fan-like if and only if so is its simplicial wedge.

A fan Σ is said to be weakly polytopal if its underlying simplicial complex KΣ

is polytopal with a simplicial polytope P ∗, and is said to be strongly polytopal

if, in addition, P ∗ satisfies the following two conditions:

• 0 ∈ P ∗.
• Σ = {posσ |σ ∈ ∂P ∗}. Here posσ is the set of all positive linear
combinations of σ, and ∂P ∗ denotes the boundary complex of P ∗.

Note that a rational fan Σ of dimension n is completely determined by the
underlying simplicial complex KΣ and a map λ : V (KΣ) → Z

n, called the
characteristic map, obtained by mapping each vertex of KΣ to the primitive
generator of the corresponding one-dimensional cone of Σ, and vice versa. Here
V (KΣ) denotes the vertex set of KΣ.

Let K be a simplicial complex of dimension n−1, equipped with a character-
istic map λ : V (K) → Z

n such that for each face σ of K the vectors λ(i), i ∈ σ,
form a part of an integral basis of Zn. Then we can obtain a new simplicial
complex linkKσ, equipped with a new characteristic map Projσλ defined by

Projσ(λ)(v) = [λ(v)], v ∈ V (linkKσ)

in the quotient space Zn/〈λ(w) |w ∈ σ〉 isomorphic to Z
n−|σ|. In a similar way,

we can also define the notion of a projected fan ProjσΣ of a fan Σ with respect
to a face σ of KΣ (refer to [7], Section 2).

In the paper [5], Ewald introduced the notion of a canonical extension which
is a particular way to obtain a simplicial wedge complex, and proved that The-
orem 1.1 below always holds for canonical extensions ([5], Theorem 2). Here,
a canonical extension of a simplicial complex K equipped with a characteristic
map λ is a simplicial wedge complex K(v) equipped with a characteristic map
λ′ such that Projviλ

′ = λ for all i = 0, 1 (see, e.g., Section 3 for a precise
definition).
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Our main aim of this paper is to significantly generalize the results of Ewald
in [5] to more general simplicial wedge complexes. In addition, we shall provide
a very simple and also efficient algorithm to construct certain particular sim-
plicial wedge complexes, which will be another important point of this paper
(see the proof of Theorem 3.2 for more details). In fact, we have the following.

Theorem 1.1. Let K be a fan-like simplicial sphere of dimension n− 1 such

that its associated complete fan is strongly polytopal, and let v be a vertex of K.

Let K(v) be the simplicial wedge complex obtained by applying the simplicial

wedge operation to K at v, and let v0 and v1 denote two newly created vertices

of K(v). Then there are infinitely many strongly polytopal fans Σ over such

K(v)’s, different from the canonical extensions, whose projected fans ProjviΣ
(i = 0, 1) are also strongly polytopal.

As a consequence of Theorem 1.1 and its proof, we can easily construct
many examples of a complete, non-singular, strongly polytopal fan Σ over the
simplicial wedge complex K(v) whose projected fans ProjviΣ (i = 0, 1) are
also complete, non-singular, and strongly polytopal (see, e.g., Example 3.5).
In sharp contrast, according to the paper [3], Section 7 there exists an example
of a complete, singular, non-strongly polytopal fan Σ over the simplicial wedge
complex K(v) whose projections ProjviΣ (i = 0, 1) are complete, singular,
and strongly polytopal. We also remark that Theorem 1.1 somehow answers a
related question posed in the paper [3] (refer to Question 7.2).

It is well known that there is a one-to-one correspondence between the collec-
tion of toric varieties and the collection of rational fans, up to some equivalence.
So, given a complete rational fan Σ there is always a compact toric variety M

which corresponds to the underlying simplicial complex KΣ. In this case, we
shall say that M is a toric variety over KΣ. Recall that M is projective if and
only if its corresponding fan Σ is strongly polytopal ([4], p. 118).

Theorem 1.2. Let K, v, K(v), v0, v1, and Σ be the same as in Theorem 1.1.

Then there are infinitely many projective toric varieties over such K(v)’s such

that toric varieties over KProj
vi

Σ (i = 0, 1) are also projective.

This paper is organized as follows. In Section 2, we briefly review necessary
facts which play an important role in the proof of Theorem 1.1. In particular,
we recall the definition of a Gale transform and the Shephard’s criterion which
gives a convenient and useful way to determine whether or not a complete fan
is strongly polytopal. Section 3 is devoted to the proofs of Theorems 1.1 and
1.2.

2. Gale transforms and Shephard’s criterion

The aim of this section is to set up some basic notation and definitions, and
to collect some important facts necessary for the proof of Theorem 1.1. To do
so, we first begin with reviewing linear transforms and Gale transforms. Refer
to [6], Chapter II-Section 4 for more details.
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Let X = (x1, x2, . . . , xm) ∈ (Rn)m be a finite sequence of vectors xi in R
n

which linearly spans R
n. Then we consider the space of linear dependencies

(or linear relations) of X which is given by the (m− n)-dimensional space

{(α1, α2, . . . , αm) ∈ R
m |

m
∑

i=1

αixi = 0}.

By choosing a basis {Θ1, . . . ,Θm−n} of the space of linear dependencies as
above, it is convenient to write it as a matrix of size (m− n)×m, as follows.

(Θ1, . . . ,Θm−n)T =







α11 . . . α1m

...
...

...
α(m−n)1 . . . α(m−n)m







(m−n)×m

= (x̄1, . . . , x̄m) =: X̄.

The finite sequence X̄ is called a linear transform (or linear representation) of
X . Clearly, a linear transform is not unique and depends only on a choice of a
basis. Note also that we have the following relationship between X and X̄

(2.1) XX̄T = 0.

It is also easy to see that X̄XT = 0 by taking the transpose of the equation
(2.1). Thus, if X̄ is a linear transform of X , then X is also a linear transform
of X̄ .

Next, in order to define a Gale transform by using the notion of a linear
transform, as before let X = (x1, x2, . . . , xm) ∈ (Rn)m be a finite sequence of
vectors xi in R

n which linearly spans R
n. Then we identify R

n as an affine
space with a hyperplane H in a linear space R

n+1 by the natural embedding

j : Rn → R
n+1, v 7→ (v, 1).

Then H = {(v, 1) ∈ R
n+1 | v ∈ R

n} does not contain the origin of Rn+1. Thus

it follows from [6], Lemma 4.15 that a linear transform
¯̂
X = (x̄1, . . . , x̄m) ∈

(Rm−n−1)m of

j(X) = ((x1, 1), . . . , (xm, 1)) =: (x̂1, . . . , x̂m)

in R
n+1 satisfies

m
∑

i=1

x̄i = 0,

and X̄ is called a Gale transform (or an affine transform) of X .
Now, we are ready to characterize a complete fan that is strongly polytopal.

To be more precise, we have the following criterion given by Shephard in the
paper [8] (or [6], Theorem 4.8 and [5], Section 2) for a complete fan to be
strongly polytopal.
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Theorem 2.1. Let X = (x1, x2, . . . , xm) ∈ (Rn)m be a finite sequence of lattice

points xi in Z
n ⊂ R

n that span the 1-dimensional cones of a complete fan Σ,
and let X̄ be a Gale transform of X. For each proper face σ = pos{xj1 , . . . , xjk}
of Σ, let C(σ) denote the convex hull generated by X̄\{x̄j1 , . . . , x̄jk}. That is,

C(σ) = conv(X̄\{x̄j1 , . . . , x̄jk}).

Then Σ is strongly polytopal if and only if we have
⋂

σ∈Σ

relintC(σ) 6= ∅.

Here, relintC(σ) means the relative interior of C(σ). Recall also that, when
σ is a proper face of Σ generated by {xj1 , . . . , xjk}, X̄\{x̄j1 , . . . , x̄jk} is called
a coface of σ in X .

In fact, in order to use the Shepherd’s criterion for a complete fan to be
strongly polytopal, we shall start with a finite sequence X whose column sum
is equal to zero. Then we obtain a linear transform X̄ of X , and use it to prove
our main Theorems 1.1 and 1.2. Refer to Section 3 for more detail.

3. Proofs of Theorems 1.1 and 1.2

The aim of this section is to give proofs of Theorems 1.1 and 1.2. In this
section, we also provide an example of a complete, non-singular, strongly poly-
topal fan Σ over the simplicial wedge complex whose projected fans are also
complete, non-singular, and strongly polytopal.

To do so, let K be a fan-like simplicial sphere of dimension n − 1 whose
vertex set V (K) is equal to {w1, w2, . . . , wm}. Then choose any vertex v, say
w1, from V (K). Let K(v) be the simplicial complex obtained by applying
the simplicial wedge operation to K at v, and let v0 and v1 denote two newly
created vertices of K(v). Let V (K(v)) be the vertex set of K(v) such that
V (K(v)) = {v0, v1, v2, . . . , vm} is given by vi = wi for each i = 2, 3, . . . ,m.

Let Σ be a complete fan associated with the simplicial complex K(v). Then
choose a point xi in R

n+1 from each 1-dimensional cone corresponding to a
vertex vi in V (K(v)) so that a finite sequence

X = (x0, x1, x2, . . . , xm) ∈ (Rn+1)m+1

positively spans Rn+1. Thus we have the identity

x0 + x1 + · · ·+ xm = 0.

For later use, let us write the finite sequence X as

(3.1) X =















a0 0 c

0 b0 d

0 0
...

... G

0 0















(n+1)×(m+1)

,
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where a0 and b0 are non-zero real numbers, c and d are row vectors of size m−1,
and G is a real matrix of size (n − 1)× (m − 1). In particular, if a0 = b0 = 1
and c = d, then X (or Σ) will be called a canonical extension of a complete fan
associated to the simplicial complex K.

Now, let

X̄ = (x̄0, x̄1, . . . , x̄m) ∈ (Rm−n)m+1

be a linear transform of X . Then it follows from [6], Theorem 4.14 that pos X̄
is a strongly positive cone C in R

m−n. Let H denote any hyperplane in R
m−n

such that H ∩ C is a polytope P̂ of dimension m − n − 1. For each x̄i, let x̂i

be an intersection point in H ∩ {rx̄i | r > 0}. Then the finite sequence

X̂ = (x̂0, x̂1, x̂2, . . . , x̂m) ∈ H

is called a Shephard diagram (or simply diagram) of X .
For the sake of notational convenience, from now on we set

X̂0 = (x̂1, x̂2, . . . , x̂m) and X̂1 = (x̂0, x̂2, . . . , x̂m).

Recall that a subsequence Y of X is said to be a coface of Σ if pos (X\Y ) is a

face of Σ. Note also that X̂ has a face poset which consists of subsequences of
X of the form X\Y for a subsequence Y of X such that

0 ∈ relin conv (X̂|X\Y ).

Thus, it follows from Theorem 2.1 that we have the following Shephard’s cri-
terion for a complete fan to be strongly polytopal (see also [8]).

Theorem 3.1. A complete fan Σ is strongly polytopal if and only if

S(Σ, X̂) :=
⋂

Y coface of Σ

relint conv(X̂ |Y ) 6= ∅.

With these understood, our first main result of this section is:

Theorem 3.2. For any n ≥ 2, there are infinitely many complete fans Σ over

such K(v)’s, different from the canonical extensions, such that

S(Σ, X̂) = S(Projv0Σ, X̂0) = S(Projv1Σ, X̂1).

Proof. To prove it, for a finite sequence X as in (3.1) let us write

G = (y1, y2, . . . , ym−1) ∈ (Rn−1)m−1.

Then we have the identity

y1 + y2 + · · ·+ ym−1 = 0.

Thus there is a Shephard diagram Ĝ = (ŷ1, . . . , ŷm−1) ∈ (Rm−n)m−1 of G.

Since Ĝ can be considered as a real matrix of size (m−n)×(m−1), it defines a
linear map L

Ĝ
from R

m−1 to Rm−n in the natural way. Note that the dimension
of the kernel of L

Ĝ
is greater than or equal to m − 1 − (m − n) = n − 1 ≥ 1.

Thus we can always choose two linearly independent vectors c = (c1, . . . , cm−1)
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and d = (d1, . . . , dm−1) in R
m−1, and two non-zero real numbers a0 and b0

such that

(3.2) L
Ĝ
(b0c− a0d)

T = Ĝ(b0c− a0d)
T = 0, a0 = −

m−1
∑

i=1

ci, b0 = −

m−1
∑

i=1

di.

In fact, there is an easy way to take two vectors c and d, and non-zero real
numbers a0 and b0 satisfying the above condition (3.2). To be more precise,

note first that all row vectors Gi of G lie in the kernel of Ĝ by the definition
of a linear transform. So choose any row vector, say G1, of G, and then write

G1 =

m−1
∑

i=1

riei,

where e1, e2, . . . , em−1 denote the standard basis vectors of R
m−1. Assume

without loss of generality that the first component of G1 is not zero, that is,

r1 6= 0. Since
∑m−1

i=1 yi = 0, we have
∑m−1

i=1 ri = 0. So it is possible to rewrite
G1 as

G1 =

m−1
∑

i=1

riei = −(

m−1
∑

i=2

ri)e1 +

m−1
∑

i=2

riei.

Now, let

a0 =
m−1
∑

i=2

ri 6= 0, b0 = 1, d = −e1, and c = −
m−1
∑

i=2

riei.

Then we have

−G1 = −(
m−1
∑

i=2

ri)(−e1) + (−
m−1
∑

i=2

riei) = −a0d+ b0c,

Ĝ(−G1)
T = −ĜGT

1 = 0,

as required.
Next, for each i = 1, 2, . . . ,m− n let

(3.3) αi = −
c · Ĝi

a0
, βi = −

d · Ĝi

b0
,

where · denotes the standard inner product and Ĝi denotes the i-th row of Ĝ.
It is easy to see from (3.2) and (3.3) that

(3.4) αi = βi, i = 1, 2, . . . ,m− n.
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With these a0, b0, c, and d as in (3.2), let us define a new finite sequence X ,
as follows:

X = (x0, x1, . . . , xm) =















a0 0 c

0 b0 d

0 0
...

... G

0 0















(n+1)×(m+1)

.

Note that, by the way of construction, it is possible to take an integral finite
sequenceX satisfying the required conditions. Here an integral sequence means
that all components of the sequence are integers. So we let Σ be a complete
rational fan whose associated finite sequence is X .

Since by the choices of a0 and b0 the identity
∑m

i=0 xi = 0 continues to hold,

we can also find a Shephard diagram of Σ. Indeed, let X̂ be






α1 β1

...
... Ĝ

αm−n βm−n







(m−n)×(m+1)

.

Then it follows from (3.3) that XX̂T = 0. Hence X̂ is a Shephard diagram of
Σ. Moreover, it is easy to see that in this case

X̂0 = ((α1, . . . , αm−n)
T , Ĝ) and X̂1 = ((β1, . . . , βm−n)

T , Ĝ)

are Shephard diagrams of Projv0Σ and Projv1Σ, respectively. Since by (3.4)
αi = βi for all i = 1, 2, . . . ,m− n, it is also important to notice that we have

(3.5) X̂0 = X̂1.

By the construction of a simplicial wedge complex, two underlying simplicial
complexesK0 andK1 of Projv0Σ and Projv1Σ, respectively, are combinatorially
equivalent so that linkK0

(v1) coincides with linkK1
(v0). Moreover, it follows

from (3.5) that two intersections S(Projv0Σ, X̂0) and S(Projv1Σ, X̂1) should be
identical. Finally, note that every coface of the simplicial wedge complex K(v)
is a coface of K0 or K1. Hence, as in [3], Proposition 5.9, we have

S(Σ, X̂) = S(Projv0Σ, X̂0) ∩ S(Projv1Σ, X̂1) = S(ProjviΣ, X̂i)

for all i = 0, 1.
Starting from any matrix G whose sum of column vectors is equal to zero,

it is now clear that we can produce infinitely many complete fans Σ over such
K(v)’s satisfying the conclusion of the theorem. This completes the proof of
Theorem 3.2. �

As a consequence of Theorem 3.2, we have the following theorem that is
same as Theorem 1.1.
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Theorem 3.3. Let K be a fan-like simplicial sphere of dimension n− 1 such

that its associate complete fan is strongly polytopal, and let v be a vertex of K.

Let K(v) be the simplicial wedge complex obtained by applying the simplicial

wedge operation to K at v, and let v0 and v1 denote two newly created vertices

of K(v). Then there are infinitely many strongly polytopal fans Σ over such

K(v)’s, different from the canonical extensions, whose projected fans ProjviΣ
(i = 0, 1) are all strongly polytopal.

Proof. To prove the theorem, first take a finite sequence X satisfying the con-
clusion of Theorem 3.2. By the way of construction of a simplicial wedge com-
plex, we can identify K with one of two simplices K0 and K1, say K0. So we
may assume that S(Projv0Σ, X̂0) is not empty. This together with Theorems
3.1 and 3.2 implies that the corresponding fans Σ, Projv0Σ, and Projv1Σ over
K(v), K0, and K1, respectively, should be strongly polytopal. This completes
the proof of Theorem 3.3. �

The following corollary follows immediately.

Corollary 3.4. Let K, v, K(v), v0, v1, and Σ be the same as in Theorem 3.3.

Then there are infinitely many projective toric varieties over such K(v)’s such

that toric varieties over KProj
vi

Σ (i = 0, 1) are also projective.

Proof. To prove it, recall that there is a one-to-one correspondence between
the collection of compact toric varieties and the collection of complete rational
fans, up to some equivalence. So there are always compact toric varieties
which correspond to the underlying simplicial complexes K(v), K0, and K1,
constructed in the proof of Theorem 3.3. Moreover, it follows from Theorem
3.3 that the corresponding fans Σ, Projv0Σ, and Projv1Σ over K(v), K0, and
K1, respectively, are now strongly polytopal. Therefore their corresponding
compact toric varieties should be all projective. This completes the proof of
Corollary 3.4. �

Finally, we close this section with an example of how to apply the algorithm
given in the proof of Theorem 3.2 in order to obtain a complete, non-singular,
strongly polytopal fan whose projected fans are also complete, non-singular,
and strongly polytopal.

Example 3.5. Let G be an integral matrix of size 2× 3 given by

G =

(

1 0 −1
0 1 −1

)

.

Then take the first row G1 = (1, 0,−1) of G. By applying our algorithm given
in the proof of Theorem 3.2 to G1, it is easy to obtain

a0 = −1, b0 = 1, c = (0, 0, 1), d = (−1, 0, 0).
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Thus our complete fan Σ is given by the following characteristic matrix λ given
by

λ =















a0 0 c

0 b0 d

0 0
...

... G

0 0















(3+1)×(4+1)

=









−1 0 0 0 1
0 1 −1 0 0
0 0 1 0 −1
0 0 0 1 −1









4×5

=: X.

Note that every 4 × 4-minor of λ has determinant equal to ±1. Thus the
complete fan Σ is actually non-singular.

Let λ0 and λ1 be the 3× 4-matrices obtained from λ given by

λ0 =





1 −1 0 0
0 1 0 −1
0 0 1 −1



 , λ1 =





−1 0 0 1
0 1 0 −1
0 0 1 −1



 .

Then λ0 and λ1 can be considered as characteristic maps associated with the
projected fans Projv0Σ and Projv1Σ, respectively. Note also that every 3 × 3-
minor of λi has determinant equal to ±1 for each i = 0, 1. Thus the projected
fans Projv0Σ and Projv1Σ are indeed non-singular (and also complete). More-
over, observe that Projv0Σ and Projv1Σ are strongly polytopal. Thus Σ is
also strongly polytopal by Theorem 3.3. It can be seen directly by using a
Shephard diagram X̂ of X . More precisely, in this case X̂ can be taken to be
(1, 1, 1, 1, 1) ∈ (R1)5, and relint conv {1} = {1}. Thus clearly we have

S(Σ, X̂) = {1} 6= ∅.

As a consequence, we can see that their associated toric varieties are actually
toric manifolds and also projective by Corollary 3.4.
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