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BJÖRLING FORMULA FOR MEAN CURVATURE ONE

SURFACES IN HYPERBOLIC THREE-SPACE AND

IN DE SITTER THREE-SPACE

Seong-Deog Yang

Abstract. We solve the Björling problem for constant mean curvature
one surfaces in hyperbolic three-space and in de Sitter three-space. That
is, we show that for any regular, analytic (and spacelike in the case of
de Sitter three-space) curve γ and an analytic (timelike in the case of de
Sitter three-space) unit vector field N along and orthogonal to γ, there
exists a unique (spacelike in the case of de Sitter three-space) surface of
constant mean curvature 1 which contains γ and the unit normal of which
on γ is N . Some of the consequences are the planar reflection principles,
and a classification of rotationally invariant CMC 1 surfaces.

1. Introduction

It is interesting that some surfaces in different space forms share similar
properties. In particular, minimal surfaces in E

3, maximal surfaces in L
3, CMC

1 surfaces in H
3(−1), and CMC 1 surfaces in de Sitter three-space S

3
1(1) have

representation formulae in terms of a meromorphic function and a holomorphic
one-form.

Another common character of the four kinds of surfaces is that they admit
Björling representation formula. Even though the Björling representation for-
mula is derived from the Weierstrass representation formula, it is useful since
it provides a simple way to derive examples with prescribed geometric data.

Recently, there have risen strong interests in Björling representation formula
for various surfaces. In particular, Aĺıas, Chaves, and Mira studied the Björling
representation formula for maximal surfaces in L

3 [4]. Gálvez and Mira studied
the Björling problem for CMC 1 surfaces in H

3(−1) [17]. For more results, see
also [7], [9], [10], [23].

Our focus is for CMC 1 surfaces in S
3
1(1) since the Björling formula for CMC

1 surfaces in H
3(−1) has been already known by Gálvez and Mira [17]. But,

since our techniques are completely different from theirs and our techniques for
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CMC 1 surfaces in H
3(−1) and for CMC 1 surfaces in S

3
1(1) are basically the

same, we record briefly our results for CMC 1 surfaces in H
3(−1) also.

Since we study only the local nature of surfaces under consideration, we
restrict our attention to a simply connected domain U in C equipped with
the standard coordinate z = u + iv throughout this article unless specified
otherwise.

Our main results are the following:

Theorem A. Given a regular analytic curve γ : I ⊂ R → H
3(−1) and an

analytic unit vector field N : I → TγH
3(−1) perpendicular to γ, there exists a

unique constant mean curvature 1 surface which contains the image of γ and

whose normal at γ(u) is N(u). When Ω is the unique analytic extension of
1
2 (I +Nγ−1)γuγ

−1du, a conformal immersion of the surface is given by

X = FF ∗ : U ⊂ C → H
3(−1),

where F : U → SL(2,C) is the unique, up to SU(2), solution of

dFF−1 = Ω, F (u0)F
∗(u0) = γ(u0) for some u0 ∈ I.

Theorem B. Given a regular, analytic and spacelike curve γ : I ⊂ R → S
3
1(1)

and a timelike analytic unit vector field N : I → TγS
3
1(1) perpendicular to

γ, there exists a unique spacelike surface of constant mean curvature 1 which

contains the image of γ and whose normal at γ(u) is N(u). When Ω is the

unique analytic extension of 1
2 (I +Nγ−1)γuγ

−1du, a conformal immersion of

the surface is given by

X = Fe3F
∗ : U ⊂ C → S

3
1(1),

where e3 is as in Definition 2.1 and F : U → SL(2,C) is the unique, up to

SU(1, 1), solution of

dFF−1 = Ω, F (u0)e3F (u0)
∗ = γ(u0) for some u0 ∈ I.

The reason why dFF−1, rather than F−1dF , is used in this article is because
of the fact that if F is holomorphic and X := FF ∗ or X := Fe3F

∗, then
XzX

−1 = FzF
−1 while X−1Xz 6= F−1Fz .

As consequences of Theorem B, we classify the rotationally invariant space-
like CMC 1 surfaces of S31(1), and prove the planar reflection principle for CMC
1 surfaces in S

3
1(1).

Some properties of minimal or maximal surfaces do not hold for CMC 1 sur-
faces in H

3(−1) or in S
3
1(1). For example, nonorientable minimal surfaces may

be constructed by Björling formula [24] but there do not exist nonorientable
CMC 1 surfaces. The geodesic reflection principle do not hold for CMC 1 sur-
faces in H

3(−1) and in S
3
1(1). In fact, there are many differences as well as

many similarities between the various surfaces. Björling formula shows both
characters at once.

It should be remarked that, unlike the Riemannian counterparts, the max-
imal surfaces in L

3 and the CMC 1 surfaces in S
3
1(1) admit singular Björling
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representation formula [19, 31]. It roughly says that given an analytic null

curve and null directions on it perpendicular to the curve, there exists a unique
maximal or CMC 1 surface which contains the given null curve as a singular

curve and the null directions as the normal directions of the surface.

Acknowledgements: I would like to thank Y. W. Kim for his interests and
encouragements for this work.

2. Preliminaries

2.1. Hermitian model of L4

L
4 is the set of quadruples of real numbers (x0, x1, x2, x3) equipped with the

metric ds2 = −dx2
0 + dx2

1 + dx2
2 + dx2

3. As in [5, 8, 28], we identity L
4 with

Herm(2), the set of all 2× 2 Hermitian matrices, via the correspondence

(2.1) (x0, x1, x2, x3) ∈ L
4 ↔

(

x0 + x3 x1 + ix2

x1 − ix2 x0 − x3

)

∈ Herm(2).

The metric is given by 〈v, v〉 = − det v. The Hermitian model enables us to use
the matrix multiplication, which is essential in our derivation of the Björling
formula. We use a dot to represent the matrix multiplication, but usually omit
it if there is no danger of confusion.

Einstein’s summation convention is employed whenever necessary.

Definition 2.1.

e0 :=

(

1 0
0 1

)

, e1 :=

(

0 1
1 0

)

, e2 :=

(

0 i

−i 0

)

, e3 :=

(

1 0
0 −1

)

.

Note that, for j, k = 1, 2, 3,

e1e2 = −ie3, e2e3 = −ie1, e3e1 = −ie2, ejek = −ekej , e2j = e0.

SL(2,C) acts isometrically on L
4 via

(2.2) SL(2,C)× L
4 → L

4, (σ, v) 7→ σvσ∗, v∗ := v̄t.

This action induces a double covering of the identity component of the special
Lorentz group SO(3, 1).

2.2. Holomorphic null curves in SL(2,C)

A holomorphic F : U ⊂ C → SL(2,C) is called null if det(Fz) = 0. See [8].
If F is holomorphic and null, then

(2.3) F−1dF =

(

g −g2

1 −1

)

ω, dFF−1 =

(

G −G2

1 −G

)

Ω

for some meromorphic functions g,G, which are called the secondary Gauss
map, the hyperbolic Gauss map of F , respectively.
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2.3. Hyperbolic three-space

The hyperbolic three-space is identified with

H
3(−1) = {v ∈ Herm(2) : det v = 1 and tr v > 0} = {σσ∗ : σ ∈ SL(2,C)}.

2.3.1. Cross product structure. As we will see later, we use the cross product
defined in TpH

3(−1) · p−1 := {vp−1 : v ∈ TpH
3(−1)}. Note that in general

TpH
3(−1) · p−1 6⊂ L

4. It is a subspace of sl(2,C) ⊂ C
4
1 of real dimension 3.

Definition 2.2. for any U, V ∈ TpH
3(−1) · p−1,

(2.4) U × V := i UV − i〈U, V 〉C4

1
e0.

Here, 〈zαeα, w
βeβ〉C4

1
:= −z0w0 + z1w1 + z2w2 + z3w3 for zα, wβ ∈ C.

Following the frame methods as in [8] for example, we first observe that
p = FF ∗ for some F ∈ SL(2,C). Then, a basis of TpH

3(−1) · p−1 consists of

ê0 := Fe1F
−1, ê1 := Fe2F

−1, ê2 := Fe3F
−1.

Note that ê1, ê2, ê3 6∈ L
4 in general.

Lemma 2.3. If U, V ∈ TpH
3(−1) · p−1, then U × V ∈ TpH

3(−1) · p−1. Fur-

thermore, for i, j, k, ℓ,m = 1, 2, 3,

ê1 × ê2 = ê3, ê2 × ê3 = ê1, ê3 × ê1 = ê2, êi × êj = −êj × êi,

akêk × bℓêℓ =

∣

∣

∣

∣

∣

∣

ê1 ê2 ê3
a1 a2 a3

b1 b2 b3

∣

∣

∣

∣

∣

∣

, 〈akêk × bℓêℓ, c
mêm〉 =

∣

∣

∣

∣

∣

∣

a1 a2 a3

b1 b2 b3

c1 c2 c3

∣

∣

∣

∣

∣

∣

.

Proof. The result follows easily from the following formula:

(akFekF
−1)× (blFelF

−1) = iF (akek)(b
lel)F

−1 − i(a1b1 + a2b2 + a3b3)e0.

�

Definition 2.4. We define that the ordered triple U, V,W ∈ TpH
3(−1) · p−1

is positively oriented if 〈U × V,W 〉 is positive.

According to this, e1, e2, e3 are positively oriented. This cross product structure
is a complete analogue of the usual cross product of E3.

2.3.2. Weierstrass-Bryant type representation theorem. Our derivation of the
Björling formula crucially depends upon the following fact.

Theorem 2.5 ([8], [30]). If F : U ⊂ C → SL(2,C) is holomorphic and null,

then X := FF ∗ : U → H
3(−1) is a smooth conformal immersion of CMC 1,

possibly with isolated singular points.

Conversely, given a simply connected domain U ⊂ C and a conformal im-

mersion X : U → H
3(−1) with CMC 1, there exists a holomorphic null map

F : U → SL(2,C) such that X = FF ∗.
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2.4. de Sitter three-space

The de Sitter three-space is identified with

S
3
1(1) = {v ∈ Herm(2) : det v = −1} = {σe3σ

∗ : σ ∈ SL(2,C)}.

It is a pseudo-Riemannian manifold of constant sectional curvature 1.

2.4.1. Cross product structure. As we will see later, we use cross product struc-
ture in the vector space TpS

3
1(1) · p

−1 · e3 := {vp−1e3 : v ∈ TpS
3
1(1)}, which is

a subspace of sl(2,C) · e3 := {ve3 : v ∈ sl(2,C)} of real dimension 3.

Definition 2.6. For any U, V ∈ TpS
3
1(1) · p

−1 · e3,

(2.5) U × V := iUe3V + i〈U, V 〉C4

1
e3.

It is clear that U × V ∈ TpS
3
1(1) · p

−1 · e3.
Any p ∈ S

3
1(1) may be written as p = Fe3F

∗ for some F ∈ SL(2,C), where
F is unique up to SU(1, 1). A basis of TpS

3
1(1) · p

−1 · e3 consists of

ẽ0 := Fe0e3F
−1e3, ẽ1 := Fe1e3F

−1e3, ẽ2 := Fe2e3F
−1e3.

Note that ẽ0, ẽ1, ẽ2 6∈ L
4 in general.

Lemma 2.7. If U, V ∈ TpS
3
1(1) · p

−1 · e3, then U × V ∈ TpS
3
1(1) · p

−1 · e3.
Furthermore, for i, j, k, ℓ,m = 0, 1, 2,

ẽ0 × ẽ1 = ẽ2, ẽ1 × ẽ2 = −ẽ0, ẽ2 × ẽ0 = ẽ1, ẽi × ẽj = −ẽj × ẽi,

akẽk × bℓẽℓ =

∣

∣

∣

∣

∣

∣

ẽ1 ẽ2 −ẽ0
a1 a2 a0

b1 b2 b0

∣

∣

∣

∣

∣

∣

, 〈akẽk × bℓẽℓ, c
mẽm〉 =

∣

∣

∣

∣

∣

∣

a1 a2 a0

b1 b2 b0

c1 c2 c0

∣

∣

∣

∣

∣

∣

.

Proof. It follows easily from the definitions. �

Definition 2.8. We define that the ordered triple U, V,W ∈ TpS
3
1(1) · p

−1 · e3
is positively oriented if 〈U × V,W 〉 is positive.

According to this, ẽ1, ẽ2, ẽ0 are positively oriented, though ẽ1× ẽ2 = −ẽ0. This
cross product structure is a complete analogue of the usual cross product of L3

[4].

2.4.2. Weierstrass-Bryant type representation theorem for constant mean cur-

vature one surfaces in de Sitter three-space.

Theorem 2.9 ([1]). If F : U ⊂ C → SL(2,C) is holomorphic and null, and in

addition the secondary Gauss map g of F satisfies |g| 6= 1, then X := Fe3F
∗ is

a space-like conformal CMC 1 surface of S31(1), possibly with isolated singular

points.

Conversely, if X : U ⊂ C → S
3
1(1) is a regular spacelike conformal immersion

of CMC 1, then there exists a holomorphic null map F : U ⊂ C → SL(2,C),
unique up to SU(1, 1), such that X = Fe3F

∗.

The induced metric and the second fundamental form of X are

I = (1− |g|2)2|ω|2, II = I + ωdg + ωdg.
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2.4.3. The hollow ball model of S31(1). For visualization purposes, we let

yk =
etan

−1 x0

√

1 + x2
0

xk, k = 1, 2, 3, for a given

(

x0 + x3 x1 + ix2

x1 − ix2 x0 − x3

)

.

S
3
1(1) is identified with a hollow ball e−π/2 <

√

y21 + y22 + y23 < eπ/2 in the
y1y2y3-space. If y1 = ρ sinφ cos θ, y2 = ρ sinφ sin θ, y3 = ρ cosφ, then

ds2
S3
1
(1) = ρ−2 sec2(2 ln ρ)

(

−dρ2 + ρ2(dφ2 + sin2 φ dθ2)
)

.

Out of this, we see that ∂ρ is a future-pointing timelike vector field. See [11].

3. Björling formula for CMC 1 surfaces in H
3(−1)

3.1. Proof of Theorem A

The following proof is motivated by [24].

Proof. We first show the uniqueness assuming the existence. Suppose that
M ⊂ H

3(−1) is a CMC 1 surface with unit normal N and that γ(I) ⊂ M and
N|I = N . By standard theory, there is a conformal immersionX : U → H

3(−1)
whose image is M . We may assume without loss of generality that Xu, Xv,N
are positively oriented. Then by Theorem 2.5, there is a null holomorphic
F : U → SL(2,C) such that X := FF ∗. It is easy to see

(3.1) dFF−1 = FzF
−1dz = XzX

−1dz =
1

2
(XuX

−1 − iXvX
−1)dz.

Since X is conformal and Xu, Xv,N are positively oriented, we have

(3.2) XvX
−1 = (NX−1)× (XuX

−1) = i(NX−1)(XuX
−1).

Therefore, XvX
−1|I = iNγ−1γuγ

−1 and

dFF−1|I =
1

2
(I +Nγ−1)γuγ

−1du.

This implies that if F exists, then dFF−1 must be the (unique) analytic ex-
tension of 1

2 (I +Nγ−1)γuγ
−1du.

Now we turn to prove the existence. First, we define a one-form

(3.3) Ω := the unique analytic extension of
1

2
(I +Nγ−1)γuγ

−1du.

Then, it is easy to see that

(a) from (2.4), we seeNγ−1γuγ
−1 = (−i)Nγ−1×γuγ

−1, which is in sl(2,C)
by Lemma 2.3. So, Ω is sl(2,C)-valued on I, hence by the monodromy
principle, everywhere.

(b) dΩ = Ω ∧Ω because Ω is holomorphic.
(c) det Ω = 0. (Since Nγ−1 ∈ sl(2,C), we may write Nγ−1 = Nkek

for some Nk ∈ C. Since detNγ−1 = detN = −〈N,N〉 = −1, we
have

∑

(Nk)2 = 1, which implies det(I + Nγ−1) = 0 on I. By the
monodromy principle again, it is so everywhere.)
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Therefore, by standard theory, there exists a null holomorphic F , unique up
to SU(2), such that dFF−1 = Ω. By Theorem 2.5, X := FF ∗ is a conformal
CMC 1 immersion, whose unit normal is denoted by N . We choose N such
that Xu, Xv,N are positively oriented.

We may assume without loss of generality that X(u0) = γ(u0) for some
u0 ∈ I. Hence (3.1) and (3.2) are valid.

We proceed to show that X |I = γ. We first observe that

γuγ
−1du = (Ω+ γΩ∗γ−1)|I

since γ,N are Hermitian. On the other hand, since X = FF ∗ and F is holo-
morphic, we have Xz̄ = F (F ∗)z̄ = F (Fz)

∗, hence

1

2
(XuX

−1+iXvX
−1)dz̄ = Xz̄X

−1dz̄ = FF ∗(FzF
−1dz)∗(FF ∗)−1 = XΩ∗X−1.

Restricted to the real interval I and combined with (3.1), this yields

XuX
−1du|I = (XzX

−1dz +Xz̄X
−1dz̄)|I = (Ω+XΩ∗X−1)|I .

By the uniqueness of the solution of this system of ODE, we conclude that
X |I = γ.

Next, we proceed to show that N|I = N . From (3.1) and (3.3) and the fact
that dFF−1 = Ω and X |I = γ, we conclude

XvX
−1|I = iNγ−1γuγ

−1.

By comparing this with (3.2), we conclude that N|I = N . (γu is invertible
since γ is regular.) �

3.2. Examples and further results

The biggest difference from the viewpoint of the Björling construction for
minimal surfaces in E

3 and CMC 1 surfaces in H
3(−1) is that γ,N and γ,−N

produce the same minimal surface in E
3, while they produce different CMC 1

surfaces in H
3(−1). Compare the examples with t = 0 and t = π in Example

3.1. This happens because changing the normal of a surface by its negative
changes the mean curvature by its negative. A simple consequence is that
there is no nonorientable CMC 1 surface. So, while the Björling formula can
be used in the construction for a nonorientable minimal surface in E

3 [24], it
can not be used for constructing nonorientable CMC 1 surfaces in H

3(−1).
It is known that catenoid cousins and horospheres are the only rotationally

invariant CMC 1 surfaces [8, 29]. Björling formula can also be used to give a
clear geometric classification of this fact.

Example 3.1 (Rotationally invariant CMC 1 surfaces). Fix r ∈ R
+, t ∈

[0, 2π), and define γ : R → H
3(−1) and N by

γ(u) :=

(

cosh r eiu sinh r
e−iu sinh r cosh r

)

,
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N(u) := cos t

(

sinh r eiu cosh r
e−iu cosh r sinh r

)

+ sin t

(

1 0
0 −1

)

.

γ is a circle in the plane x3 = 0, of radius r centered at ( 1 0
0 1 ). It is easy to see

that N(u) ∈ Tγ(u)H
3(−1), 〈N, γu〉 = 0, 〈N , N〉 = 0, and that it is invariant

under the rotation around the geodesic x1 = x2 = 0. These data produces
all the rotationally invariant CMC 1 surfaces in H

3(−1) up to congruency. If
sinh r+cos t cosh r = 0 we obtain horospheres. Otherwise, we obtain two-ended
surfaces.

Example 3.2 (Helicoidal CMC 1 surfaces). Take

γ(u) :=

(

eu 0
0 e−u

)

, N(u) :=

(

0 ef(u)i

e−f(u)i 0

)

,

where f : R → R is analytic. γ is a geodesic. We easily compute

1

2

(

I +Nγ−1
)

γuγ
−1du =

1

2

(

1 −eu+f(u)i

e−u−f(u)i −1

)

du.

If we take f(u) = θu for some θ ∈ R
+, then G = e(1+iθ)z, Ω = 1

2e
−(1+iθ)zdz,

where G,Ω are as in (2.3). By substituting (1 + iθ)z by w, we obtain G =
ew, Ω = 1

2(1+iθ)e
−wdw. Compare these data with those of the Euclidean he-

licoid. We refer interested readers to [27, Example 1.8] for further analysis of
this example.

We now introduce some properties of CMC 1 surfaces in H
3(−1) which can

easily be derived from the Björling formula.

Lemma 3.3. Given a regular and analytic curve γ of unit speed and nonzero

curvature in H
3(−1), there exists a CMC 1 surface which contains γ as a

geodesic, but there can not be more than two.

Proof. Let N be the principal normal of γ. By solving the Björling problem
with N or −N the existence is proved. On the other hand, N must be the
unit normal or the negative unit normal of the surface which contains γ as a
geodesic. So there cannot be more than two such surfaces. �

Surfaces in Example 3.1 with t = 0, π are CMC 1 surfaces with a circle as a
geodesic. It would be interesting to find γ which has only one CMC 1 surface
with γ as a geodesic.

Sa Earp and Toubiana proved in [27] that CMC 1 surfaces in H
3(−1) satisfy

the planar reflection, but not the geodesic reflection. Björling formula can
provide another proof for the planar reflection.

4. Björling formula for CMC 1 surfaces in S
3

1
(1)

4.1. Proof of Theorem B

The following proof is basically the same as the proof of Theorem A, but we
present the details to make this proof self contained.
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Proof. We first show the uniqueness assuming the existence. Suppose that
M ⊂ S

3
1(1) is a spacelike CMC 1 surface with timelike unit normal N and that

γ(I) ⊂ M and N|I = N . By Theorem 2.9, for any p ∈ γ(I), there is a null
holomorphic F : U → SL(2,C) such that a neighborhood of p in M is the
image of X := Fe3F

∗. We obtain

(4.1)

dFF−1 = FzF
−1dz = Fze3F

∗(F ∗)−1e−1
3 F−1dz

= (Fe3F
∗)z(Fe3F

∗)−1dz = XzX
−1dz

=
1

2
(XuX

−1 − iXvX
−1)dz.

Since X is conformal and Xu, Xv,N are positively oriented, we have

(4.2) XvX
−1 = (NX−1)× (XuX

−1) = i(NX−1)(XuX
−1).

Therefore, XvX
−1|I = iNγ−1γuγ

−1, and (4.1), (4.2) imply that

dFF−1|I =
1

2
(I +Nγ−1)γuγ

−1du.

This implies that if F exists, then dFF−1 must be the (unique) analytic ex-
tension of 1

2 (I +Nγ−1)γuγ
−1du.

Now we turn to prove the existence. First recall that sl(2,C) is spanned by
e1, e2, e3 over C. We define a one-form

(4.3) Ω := the unique analytic extension of 1
2 (I +Nγ−1)γuγ

−1du.

Then, it is easy to see that

(a) From (2.5), we see Nγ−1γuγ
−1 = −i(Nγ−1e3) × (γuγ

−1e3), which is
in sl(2,C) by Lemma 2.7. So, Ω is sl(2,C)-valued on I, hence by the
monodromy principle, everywhere.

(b) dΩ = Ω ∧Ω because Ω is holomorphic.

(c) det Ω = 0. (Since Nγ−1 ∈ sl(2,C), we may write Nγ−1 =
∑3

k=1 N
kek

for some Nk ∈ C. Since detNγ−1 = − detN = 〈N,N〉 = −1, we
have

∑

(Nk)2 = 1, which implies det(I + Nγ−1) = 0 on I. By the
monodromy principle again, it is so everywhere.)

Therefore, by standard theory, there exists a null holomorphic F such that
dFF−1 = Ω. By Theorem 2.9, X := Fe3F

∗ is a conformal CMC 1 immersion,
whose unit (timelike) normal is denoted by N . We may assume without loss of
generality that X(u0) = γ(u0) for some u0 ∈ I by multiplying F by an element
of SL(2,C) if necessary, and that XuX

−1e3, XvX
−1e3, NX−1e3 are positively

oriented.
We proceed to show that X |I = γ. We first observe that

γuγ
−1du = (Ω+ γΩ∗γ−1)|I
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since γ,N are Hermitian and 〈N, γu〉 = 0. On the other hand, sinceX = Fe3F
∗

and F is holomorphic, we have Xz̄ = Fe3(F
∗)z̄ = Fe3(Fz)

∗, hence

1

2
(XuX

−1 + iXvX
−1)dz̄ = Xz̄X

−1dz̄ = (Fe3F
∗)(FzF

−1dz)∗(Fe3F
∗)−1

= XΩ∗X−1.

Restricted to the real interval I and combined with (4.1), this yields

XuX
−1du|I = (XzX

−1dz +Xz̄X
−1dz̄)|I = (Ω+XΩ∗X−1)|I .

By the uniqueness of the solution of this system of ODE, we conclude that
X |I = γ.

Next, we proceed to show that N|I = N . Note that F and X satisfy (4.1)
and (4.2), respectively. From (4.1) and (4.3) and the fact that dFF−1 = Ω
and X |I = γ, we conclude

XvX
−1|I = iNγ−1γuγ

−1.

By comparing this with (4.2), we conclude that N|I = N . (γu is invertible
since γ is regular.) �

Remark 4.1. Our Björling formula is essentially the same as the Björling for-
mula for maximal surfaces in L

3 [4], which is obtained by taking the real part
of the integral of the analytic extension of γu − iN × γ.

4.2. Examples and further results

As an application of the Björling formula, we provide an explicit descrip-
tion of all the rotational CMC 1 surfaces of S31(1). It should remarked that
rotationally invariant linear Weingarten surfaces of S31(1) are classified in [22].

Recall that the following curves

γT (t) :=

(

et 0
0 −e−t

)

, γS(t) :=

(

cos t sin t
sin t − cos t

)

, γL(t) :=

(

t+ 1 t

t t− 1

)

are timelike, spacelike, lightlike geodesics of speed 1, 1, 0, respectively, passing
through e3 when t = 0 and that the rotations of S31(1) around these geodesics
are represented by

RT (ϕ) :=

(

e−i
ϕ

2 0

0 ei
ϕ

2

)

,

RS(ϕ) :=

(

cosh ϕ
2 i sinh ϕ

2
−i sinh ϕ

2 cosh ϕ

2

)

,

RL(ϕ) :=

(

1− iϕ2 iϕ2
−iϕ2 1 + iϕ2

)

.
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That is, given p ∈ S
3
1(1), the map ϕ 7→ R⋆(ϕ) · p · R⋆(ϕ)

∗ rotates p around γ⋆
for each ⋆ = T, S, L. The translations along γT , γL, γS are represented by

TT (s) :=

(

es 0
0 e−s

)

, TL(s) :=

(

1 + s −s

s 1− s

)

, TS(s) :=

(

cos s − sin s
sin s cos s

)

.

In particular, T⋆(t/2)e3T⋆(t/2)
∗ = γ⋆(t).

We now present explicit description of the standard rotational CMC 1 sur-
faces.

Lemma 4.2. Let SL := 1√
2

(√
i −

√
−i

√
i

√
−i

)

, SS := 1√
2

(

i 1
−1 −i

)

,

Φp(c, z) :=























1
√
µ

(

−1−µ

2 z(1−µ)/2 1−µ

2 z(1+µ)/2

1−µ
2 z(−1−µ)/2 −1−µ

2 z(µ−1)/2

)

if µ :=
√
1− 4c 6= 0,

1
2
√
z

(

−z z(−2 + log z)

1 −2− log z

)

if c = 1
4 ,

and

FT (α, z) := Φp(
α
2 , e

−iz)Φp(
α
2 , 1)

−1,

FL(α, z) := SL

(

z 1
1 0

)(√
α sin(

√
αz) cos(

√
αz)

cos(
√
αz) − 1√

α
sin(

√
αz)

)

S−1
L ,

FS(α, z) := SSΦp(
α
2 ,−e−z)Φp(

α
2 ,−1)−1S−1

S .

Then, dF⋆(α, z)F⋆(α, z)
−1 = − i

2αΩ̃⋆(z) and F⋆(α, 0) = e3, where

Ω̃T (z) :=

(

1 −e−iz

eiz −1

)

dz, Ω̃S(z) :=

(

cosh z −(1 + i sinh z)
1− i sinh z − cosh z

)

dz,

Ω̃L(z) :=

(

z2 + 1 −(z2 − 1 + 2iz)
z2 − 1− 2iz −(z2 + 1)

)

dz.

Furthermore, for α ∈ R \ {0}, X⋆(α, z) := F⋆(α, z)e3F⋆(α, z)
∗ are rotationally

invariant around γ⋆. XT has closing period and has two ends, which are elliptic

or parabolic or hyperbolic if 1+2α > or = or < 0, respectively. (See [15] for the
definition of elliptic, parabolic, hyperbolic ends.) For ⋆ = T, L, S, the surfaces

with different α are not congruent.

Proof. It is computed by Fujimori in [15] that Φp(c, z) is a particular solution
of

ΦzΦ
−1 = c

(

1/z −1
1/z2 −1/z

)

, c ∈ C.

The rest of the proof follows from direct calculations. �

Now we construct arbitrary rotational CMC 1 surfaces around γ⋆. First,
choose three pairs of a point in S

3
1(1)∩{x2 = 0} and a timelike vector of length

1 in TpS
3
1(1) ∩ {x2 = 0} as follows, where t ∈ R and k ∈ R \ {0}.

(T) pT := γS(t) and VT := k+k−1

2

(

1 0
0 1

)

+ k−k−1

2

(

− sin t cos t
cos t sin t

)

.
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(S) pS := γT (t) and VS := k+k−1

2

(

et 0
0 e−t

)

+ k−k−1

2

(

0 1
1 0

)

.

(L) pL := RT (π)γL(t)RT (π)
∗, and

VL :=
1

2k

(

1 −1
−1 1

)

+
k

2

(

(1 + t)2 1− t2

1− t2 (1− t)2

)

.

By rotating p⋆ and V⋆ around the geodesic γ⋆, we obtain the Björling data we
want:

(4.4) c⋆(u) := R⋆(u) · p⋆ · R
∗
⋆(u), V⋆(u) := R⋆(u) · V⋆ · R⋆(u)

∗

are circles around γ⋆ and a timelike unit vector field on it, respectively. Now
we apply Theorem B with c⋆ and V⋆ to obtain Ω⋆ and F⋆, the analysis of which
becomes easy by the use of the following lemma.

Lemma 4.3. (1) For ⋆ = T, L, S and any v0 ∈ R, z ∈ Z,

T⋆(v0)Ω̃⋆(z)T⋆(v0)
−1 = Ω̃⋆(z + 2iv0).

(2) Suppose that P Ω̃(z)P−1 = Ω̃(z + iv0) for some v0 ∈ R and P ∈

SL(2,C) and that Gz(z)G
−1(z) = Ω̃(z). Then F (z) := G(z + 2iv0) satisfies

Fz(z)F
−1(z) = P Ω̃(z)P−1.

Proof. The proof is easy and left to the reader. �

In the following three examples, note that P is some translation matrix T⋆.

Example 4.4 (Rotationally invariant around the timelike geodesic γT ). Con-
sider the circle cT (u) and the vector field VT (u). If (k

2 − 1) cos t+2k sin t 6= 0,

then β :=
√

(k2−1) cos t+2k sin t

1+k2−2k cos t+(k2−1) sin t
6= 0 and Theorem B yields Ω = PΩTP

−1,

where

ΩT = −
i

2
αΩ̃T , α =

sin t

2k
((k2 − 1) cos t+ 2k sin t), P =

(

β 0
0 β−1

)

.

Note that P is a translation matrix along γT even if β2 < 0. These Weierstrass
data have appeared in [27].

Suppose β2 > 0. Then, F (z) := TT (v1)FT (z + 2v0i), where v0, v1 are such
that

TT (v0 + v1) = P, TT (v1)FT (2iv0)e3FT (2iv0)
∗TT (v1)

∗ = cT (0)

is a solution to dF (z)F−1(z) = Ω(z) and F (0)e3F (0)∗ = cT (0). The case for
β2 < 0 may be argued similarly.

On the other hand, suppose (k2 − 1) cos t + 2k sin t = 0. Then, Ω =
−i tan t

(

0 eiz

0 0

)

dz if in addition |t| < π/2, but Ω = −i tan t
(

0 0
e−iz 0

)

dz if in
addition π/2 < |t| < π. In both of the cases, we get a complete CMC 1 surface
in S

3
1(1), which is unique up to congruency and has only one end.



BJÖRLING FORMULA FOR CMC 1 SURFACES IN H3(−1) AND IN S3
1
(1) 171

Figure 1. The rotational surfaces in Examples 4.4, 4.5, 4.6, respectively.

Example 4.5 (Rotationally invariant around the lightlike geodesic γL). Con-
sider the circle cL(u) and the vector field VL(u). If 1+ tk 6= 0, then Theorem B
yields Ω = PΩLP

−1 where

ΩL = −
i

2
αΩ̃L, α = t(1 + tk)2/k, P :=

(

1 + k
2(1+tk) − k

2(1+tk)
k

2(1+tk) 1− k
2(1+tk)

)

.

Then, F (z) := TL(v1)FL(z + 2v0i), where v0, v1 are such that

TL(v0 + v1) = P, TL(v1)FL(2iv0)e3FL(2iv0)
∗TL(v1)

∗ = cL(0),

is a solution to dF (z)F−1(z) = Ω(z) and F (0)e3F (0)∗ = cL(0). The resulting
surface X is well defined on C.

If 1 + tk = 0, then we again obtain the complete CMC 1 surface.

Example 4.6 (Rotationally invariant around a spacelike geodesic γS). For the
circle cS(u) and the vector field VS(u), Theorem B yields Ω = PΩSP

−1 where

ΩS := −
i

2
αΩ̃S , α :=

e−2t − 1

8k

(

e2t(k + 1)2 + (k − 1)2
)

,

P :=
1

√
2
√

e2t(k + 1)2 + (k − 1)2

(

et(k + 1) + k − 1 et(k + 1)− k + 1
−(et(k + 1)− k + 1) et(k + 1) + k − 1

)

.

Then, F (z) := TS(v1)FS(z + 2v0i), where v0, v1 are such that

TS(v0 + v1) = P, TS(v1)FS(2iv0)e3FS(2iv0)
∗TS(v1)

∗ = cS(0),

is a solution to dF (z)F−1(z) = Ω(z) and F (0)e3F (0)∗ = cS(0).

Note that Ω̃⋆e3 for ⋆ ∈ {T, S, L} on the u-axis are

(1, cosu,− sinu, 0)du, (u2 + 1, u2 − 1, 2u, 0)du, (coshu, 1, sinhu, 0)du,

respectively, and that they represent the ellipse, parabola, hyperbola in the
lightcone 0 = −x2

0 + x2
1 + x2

2, x3 = 0. Why the one-forms are related to the
conics in this way is explained in the singular Björling formula for CMC 1
surfaces in S

3
1(1) [31].

Lemma 4.7 (Rotationally invariant spacelike CMC 1 surfaces). Any rotation-

ally invariant spacelike CMC 1 surface of revolution is congruent to (a piece

of) one of the four kinds of surfaces described in the above three examples.
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Proof. By applying isometries if necessary, we may assume that any rotation-
ally invariant spacelike CMC 1 surface of revolution contains a circle and unit
normal as in (4.4). Then the uniqueness of the solution to the Björling problem
implies the lemma. �

Remark 4.8. The rotationally invariant surfaces in L
3 are called elliptic, para-

bolic, or hyperbolic catenoids depending upon the causal character of the axis.
However, for CMC 1 surfaces in S

3
1(1) those names have been already taken up

to denote the two-ended surfaces with elliptic, parabolic, or hyperbolic mon-
odromy. See [15].

Lemma 4.9. Let γ be a spacelike and analytic curve in S
3
1(1) of unit speed. If

∇γ̇ γ̇ is timelike and nonzero everywhere, where ∇ is the Levi-Civita connection

of S
3
1(1), then there exists a unique spacelike surface, which contains γ as a

geodesic, of CMC 1 with respect to its future pointing unit normal.

Proof. Apply Theorem B by taking N = ±
∇γ̇ γ̇

|∇γ̇ γ̇|
. (We must take − if ∇γ̇ γ̇ is

past pointing.) �

Now, we study the reflection principles of the spacelike CMC 1 surfaces in
S
3
1(1). In the following lemmas, a plane means a surface in S

3
1(1) which is

congruent to S
3
1(1) ∩ {(x0, x1, x2, x3) ∈ L

4 : x2 = 0}.

Lemma 4.10. In addition to the hypotheses of Theorem B, suppose that both

γ and N are planar. Then the Björling solution is symmetric with respect to

the plane. In particular, it is perpendicular to the plane.

Proof. We may assume without loss of generality that the plane is x2 = 0.
Let X : D ⊃ I → S

3
1(1) be the unique solution of the Björling problem with

γ and N . Let D̃ := {(u, v) ∈ C : (u,−v) ∈ D}, and define X̃ : D̃ → S
3
1(1)

by X̃(u, v)= the complex conjugate of X(u,−v). Then, the image of X̃ is the

reflection of the image of X with respect to the plane, and both X and X̃ are
the solution of the Björling problem with γ and N . By the uniqueness of the
solution, we have X̃(u, v) = X(u, v) on D ∩ D̃. �

Corollary 4.11 (Planar reflection). If a plane intersects a CMC 1 surface

orthogonally, then the surface is symmetric with respect to the plane.

Proof. It follows because the surface is the solution to Björling problem with the
intersection of the surface and the plane and the future pointing unit normal.

�

Remark 4.12. The geodesic reflection principle does not hold in general for
CMC 1 surfaces in S

3
1(1). For example, consider

γ(u) =

(

0 eiu

e−iu 0

)

, N(u) =

(

1 0
0 1

)

, −∞ < u < ∞.
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Applying Theorem B, we obtain the equation dFF−1 =
(

1 −eiz

e−iz
−1

)

i
2dz, whose

general solution is

F (z) =

(

eiz/2 0
0 e−iz/2

)

1
√
2

(

−i 1
−1 i

)(

e−z/2 0
0 ez/2

)

R, R ∈ SL(2,C).

It is easy to see that R = 1√
2

(

1 1
−1 1

)

makes F (t)e3F
∗(t) = γ(t) for t ∈ R.

Now we consider the reflection through the geodesic γ(t) = (0, cos t, sin t, 0).
If V ∈ Tγ(t)S

3
1(1) is perpendicular to γ, then 〈V, γ(t)〉S3

1
(1) = 〈V, γ̇(t)〉S3

1
(1) = 0,

hence V is necessarily of the form V = (v0, 0, 0, v3). The reflection we consider
is equal to the transformation (x0, x1, x2, x3) → (−x0, x1, x2,−x3). Now it is a
trivial matter to check that the surface we obtained is not invariant under this
transformation.

Figure 2. The first are γ and N . The second is the solution
of the Björling problem with γ,N , the reflection of which with
respect to γ is the third.

The following result is motivated by [27, Remark 3.4], which is about CMC
surfaces in H

3(−1). The proof is basically the same, but we include it here for
the sake of completeness of this article.

Lemma 4.13. Let S ⊂ S
3
1(1) be a surface of constant mean curvature H ∈ R,

bounded by a piece of a spacelike geodesic L of S31(1). Then, S can be extended

to a constant mean curvature surface that is symmetric with respect to L if and

only if H = 0, that is, if and only if S is a maximal surface of S31(1).

Proof. Let p be a point in L ∩ S, and P be the geodesic plane through p

orthogonal to L. Let γ = S ∩ P and let γ̃ = γ ∪ R(γ), where R : P → P is
the reflection with respect to p. That is, γ̃ is obtained by symmetrizing the
intersection curve of P and S with respect to p. γ̃ is a C2 curve whose curvature
at p is 0. Varying p on L∩S, we obtain a C2 surface. If we think about the mean
curvature of this surface at p, we see that there are two orthogonal directions
in which the curvature is 0, that is the direction of L and the direction of γ,
hence the mean curvature of the surface is 0 along L ∩ S. �
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