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STRUCTURE THEOREMS FOR SOME CLASSES OF GRADE

FOUR GORENSTEIN IDEALS

Yong Sung Cho, Oh-Jin Kang, and Hyoung June Ko

Abstract. The structure theorems [3, 6, 21] for the classes of perfect
ideals of grade 3 have been generalized to the structure theorems for the
classes of perfect ideals linked to almost complete intersections of grade
3 by a regular sequence [15]. In this paper we obtain structure theorems
for two classes of Gorenstein ideals of grade 4 expressed as the sum of
a perfect ideal of grade 3 (except a Gorenstein ideal of grade 3) and an
almost complete intersection of grade 3 which are geometrically linked by
a regular sequence.

1. Introduction

Structure theorem for perfect ideals in a noetherian local ring goes back to
the Hilbert structure theorem for perfect ideals of grade 2 over a polynomial
ring [12]. It was generalized by Burch to a local ring [4]. Using multilinear
algebra and algebra structure on finite free resolutions, Buchsbaum-Eisenbud
gave structure theorems for two classes of Gorenstein ideals and almost com-
plete intersections of grade 3 [6]. Kustin and Miller introduced the numerical
invariant λ(I) to classify a class of Gorenstein ideals of grade 4 in terms of
resolutions of R/I in a Gorenstein local ring R [18]. Brown and Sanchez [3, 21]
described structure theorems for a class of perfect ideals of grade 3 with type
2 and λ(I) > 0 and for a class of perfect ideals of grade 3 with type 3 and
λ(I) ≥ 2, respectively. These perfect ideals described by Buchsbaum-Eisenbud,
Brown and Sanchez are algebraically linked to an almost complete intersection
of grade 3 by a regular sequence. We gave a structure theorem for some classes
of perfect ideals of grade 3 which are algebraically linked to an almost com-
plete intersection by a regular sequence [15]. It says that every perfect ideal I
of grade 3 with type τ and 1 ≤ τ ≤ 4 algebraically linked to an almost complete
intersection J of grade 3 with type r by a regular sequence x = x1, x2, x3 has
the form:

I = (x, p11, p21, . . . , pr1),
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where pi1 is an element defined in (2.11) or (2.12). This contains some classes of
perfect ideals of grade 3 with type 4. Structure theorems proved by Buchsbaum-
Eisenbud, Brown and Sanchez are obtained from it. A structure theorem for
complete intersections of grade g ≥ 4 is described in [10, 16]. A structure
theorem for some classes of perfect ideals of grade 3 which are algebraically
linked by a regular sequence to a class of perfect ideals of grade 3 minimally
generated by five elements is given in [14]. Kustin and Miller gave a structure
theorem for a class of Gorenstein ideals of grade 4 mentioned above. A struc-
ture theorem for a class of Gorenstein ideals of grade 4 expressed as the sum of
a Gorenstein ideal of grade 3 and an almost complete intersection of grade 3 ge-
ometrically linked by a regular sequence is studied in [7]. El Khoury, Iarrobino
and Srinivasan gave a structure theorem for a class of homogeneous Gorenstein
ideals I = ⊕t≥2It of grade 4 in R = k[x, y, z, w] such that height (I2) = 1
and (I2) = (wx,wy, wz) or (I2) = (wx,wy, w2) over a field k [13, 17]. The
main purpose of this paper is to give two structure theorems for some classes
of Gorenstein ideals of grade 4 expressed as the sum of a perfect ideal of grade
3 with type τ (2 ≤ τ ≤ 4) and an almost complete intersection of grade 3 with
type r geometrically linked by a regular sequence. These Gorenstein ideals of
grade 4 fall into one of the following two classes:

(E) a class of Gorenstein idealsH of grade 4 expressed as the sum of a perfect
ideal I of grade 3 with type τ and an almost complete intersection J of grade
3 with even type r geometrically linked by a regular sequence x = x1, x2, x3 in
I ∩ J.

(O) a class of Gorenstein idealsH of grade 4 expressed as the sum of a perfect
ideal I of grade 3 with type τ and an almost complete intersection J of grade
3 with odd type r geometrically linked by a regular sequence x = x1, x2, x3 in
I ∩ J.

In Section 2, we review linkage theory and a structure theorem for some
classes of perfect ideals of grade 3 with type τ algebraically linked to almost
complete intersections of grade 3.

In Section 3, we construct the minimal free resolution of R/H , where H is
a Gorenstein ideal of grade 4 in one of two cases (E) and (O). To do this we
build up some matrices.

In Section 4, we give structure theorems for the two classes mentioned above.
We introduced a complete matrix which plays a key role in describing a struc-
ture theorem for complete intersections of grade 4 [16].

(a) If H = I + J is a Gorenstein ideal of grade 4 in class (E), then H is
generated by the pfaffian of a certain alternating submatrix of the alternating
matrix A(L) induced by a skew symmetrizable matrix L and the quotients L̄i

of the maximal order pfaffians of A(L), that is,

H = (L̄1, L̄2, . . . , L̄r+3,A(L)123).

(b) If H = I + J is a Gorenstein ideal of grade 4 in class (O), then H is
generated by the pfaffians of some alternating submatrices of the alternating
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matrix T = L̃ defined in (4.5) and elements h̄i defined in Theorem 4.13 for
i = 1, 2, . . . , r, that is,

H = (T12, T13, T23,Pf(T ), h̄1, h̄2, . . . , h̄r).

The proofs for these theorems depend on the Bass’ result [2, Proposition 2.9]
and the structure theorem for some classes of perfect ideals of grade 3 with
type τ algebraically linked to an almost complete intersection of grade 3 with
type r by a regular sequence.

2. Structure theorems for some classes of perfect ideals and linkage

An n×nmatrix Y = (yij) with entries in a commutative ring R is alternating
if yii = 0 and yji = −yij . The determinant of this matrix is a perfect square in
R, and the pfaffian of Y is defined as uniquely determined the square root of
the determinant of Y and is denoted by Pf(Y ) (see Artin [1, p. 40]). Let (i) be
a multi-index i1, i2, . . . , is. If s < n, we define Pf(i)(Y ) to be the pfaffian of the
alternating submatrix of Y obtained by deleting rows and columns i1, i2, . . . , is
from Y. Let θ(i) denote the sign of a permutation that rearranges (i) in an
increasing order. If (i) has a repeated index, then we set θ(i) = 0. Let τ(i) be
the sum of the entries of (i). Define

(2.1) Y(i) = (−1)τ(i)+1θ(i)Pf(i)(Y ).

If s = n, let Y(i) = (−1)τ(i)+1θ(i) and if s > n, let Y(i) = 0. Let y =
[

Y1 Y2 · · · Yn

]

be the row vector of the maximal order pfaffians of Y,

signed appropriately according to the conventions described above. There is a
“Laplace expansion” for developing pfaffians in terms of ones of lower order.

Lemma 2.1 ([18]). Let Y be an n×n alternating matrix and j a fixed integer,

1 ≤ j ≤ n. Then

(1) Pf(Y ) =

n
∑

i=1

yijYij , and

(2) yY = 0.

The following lemma follows from Lemma 2.1.

Lemma 2.2 ([21]). Let Y be an n× n alternating matrix. Let a, b, c, d, and e

be distinct integers between 1 and n. Then

(1)
n
∑

i=1

yikYiab = −δkaYb + δkbYa,

(2)

n
∑

i=1

yikYiabc = δkaYbc − δkbYac + δkcYab,

(3)

n
∑

i=1

yikYiabcd = −δkaYbcd + δkbYacd − δkcYabd + δkdYabc,
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(4)

n
∑

i=1

yikYiabcde = δkaYbcde − δkbYacde + δkcYabde − δkdYabce + δkeYabcd,

where δij is Kronecker’s delta.

For further purpose, we need a lemma which follows from Lemma 2.2.

Lemma 2.3. Let τ be an integer with τ ≥ 4. Let i, j, k, and l be integers with

1 ≤ i, j, k, l ≤ τ. Let Y = (yij) be a τ × τ alternating matrix. Then we have

YjklYi − YiklYj + YijlYk − YijkYl = 0.

A Gorenstein ideal of grade 3 in a noetherian local ring is characterized in
the following form.

Theorem 2.4 ([6]). Let R be a noetherian local ring with maximal ideal m.

(1) Let n > 3 be an odd integer. Let F be a free R-module with rank F = n.

Let f : F ∗ → F be an alternating map whose image is contained in mF .

Suppose that Pfn−1(f) has grade 3. Then Pfn−1(f) is a Gorenstein ideal

minimally generated by n elements.

(2) Every Gorenstein ideal of grade 3 arises in this way.

We notice that as in [6] or [20], in most cases, linkage is used in the case
of perfect ideals in Gorenstein or Cohen-Macaulay local rings. However, the
results that we use here are true for perfect ideals in any commutative ring, as
shown by Golod [11].

Definition 2.5. Let I and J be perfect ideals of grade g. An ideal I is linked
to J, I ∼ J if there exists a regular sequence x = x1, x2, . . . , xg in I ∩ J such
that J = (x) : I and I = (x) : J, and geometrically linked to J if I ∼ J and
I ∩ J = (x).

A fundamental result is that the linkage is a symmetric relation on the set
of perfect ideals in a noetherian ring R.

Theorem 2.6 ([20]). Let R be a noetherian ring. If I is a perfect ideal of

grade g and x = x1, x2, . . . , xg is a regular sequence in I, then J = (x) : I is a

perfect ideal of grade g and I = (x) : J.

An almost complete intersection of grade g is linked to a Gorenstein ideal
of grade g by a regular sequence x.

Proposition 2.7 ([6]). Let I and J be perfect ideals of the same grade g in

a noetherian ring R, and suppose that I is linked to J by a regular sequence

x = x1, x2, . . . , xg. Then

(1) If I is Gorenstein, then J = (x, w) for some w in R and

(2) If J is minimally generated by x and w, then I is Gorenstein.

The following theorem provides a method of constructing a Gorenstein ideal
of grade g + 1 from perfect ideals of grade g.
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Theorem 2.8 ([20]). Let R be a noetherian ring. Let I and J be perfect ideals

of grade g. If I and J are geometrically linked, then H = I +J is a Gorenstein

ideal of grade g + 1.

Let R be a commutative ring with identity, and let A = (aij) be an r × 3
matrix and Y = (yij) an r× r alternating matrix over R, where r is a positive
integer greater than 1. We define C = (ci), E = (ej), S = (sij), and Z = (zij)
to be a 1×3 matrix, a 1×rmatrix, a 3×rmatrix and a 3×3 matrix, respectively,
given by the following: For any two integers m < t in {i,m, t} = {1, 2, 3}, we
define

(2.2) ci =















∑

1≤u<v≤r

i6=m,t

Yuv

∣

∣

∣

∣

∣

aum aut

avm avt

∣

∣

∣

∣

∣

if r is even

0 if r is odd,

(2.3) ej =







∑

1≤a<b<c≤r

−YjabcDabc if r is even

Yj if r is odd,

(2.4) sij =



















(−1)i+1
∑

1≤h≤r

Yjhahi if r is even

(−1)i+1
∑

1≤u<v≤r

Yjuv

∣

∣

∣

∣

∣

aum aut

avm avt

∣

∣

∣

∣

∣

if r is odd,

Z =



















diag{−Pf(Y ),−Pf(Y ),−Pf(Y )} if r is even






0 Z3 −Z2

−Z3 0 Z1

Z2 −Z1 0






, z =

[

Z1 Z2 Z3

]

if r is odd,
(2.5)

where Dabc is the determinant of a 3× 3 submatrix of A formed by three rows
a, b, c of A in this order, and Zi = −

∑r

k=1 Ykaki for i = 1, 2, 3.
We also define w to be an element in R as follows:

(2.6) w =







Pf(Y ) if r is even
∑

1≤a<b<c≤r

YabcDabc if r is odd.

For the case that r is even, we define F to be a 3× r matrix given by

(2.7) F =





a11 a21 · · · ar1
−a12 −a22 · · · −ar2
a13 a23 · · · ar3



 = (fij), where fij = (−1)i+1aji.

We give an another version of a structure theorem for almost complete in-
tersections of grade 3.
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Theorem 2.9 ([15]). Let R be a noetherian local ring with maximal ideal m

and J an almost complete intersection of grade 3 with type r. With the above

notation, if r is even, then

(2.8) J = (c1, c2, c3, w),

with its minimal free resolution of R/K3(f)

F : 0 // Rr
f3

// Rr+3 f2
// R4 f1

// R,

where

f1 =
[

C w
]

, f2 = ˜f =





Z S

C E



 , f3 =

[

F

Y

]

,

and if r is odd, then

(2.9) J = (Z1, Z2, Z3, w),

with its minimal free resolution of R/K3(f)

F : 0 // Rr
f3

// Rr+3 f2
// R4 f1

// R,

where

f1 =
[

z w
]

, f2 = ˜f =





Z S

C E



 , f3 =
[

A Y
]t
.

Proof. See [15, Theorem 4.8]. �

Let x = x1, x2, x3 be a regular sequence in an almost complete intersection
J = (t1, t2, t3, t4) of grade 3 with type r in (2.8) or (2.9). Then we can find a
4× 3 matrix B = (bij) such that

(2.10) x =
[

t1 t2 t3 t4
]

B.

Let D̄abc be the determinant of the submatrix of A formed by three rows a, b, c
of B in this order. In [15] we have defined pk1 to be an element given by if r is
even, then

pk1 =
∑

1≤a<b<c≤r

−YkabcDabcD̄123 −
r

∑

l=1

(al1D̄234 + al2D̄134 + al3D̄124)Ykl

= ekD̄123 − (s1kD̄234 − s2kD̄134 + s3kD̄124),(2.11)

and if r is odd, then

(2.12) pk1 = −YkD̄123 + (s1kD̄234 − s2kD̄134 + s3kD̄124).

Now we give a structure theorem for some classes of perfect ideals of grade 3
linked to an almost complete intersection of grade 3 by a regular sequence.
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Theorem 2.10 ([15]). Let R be a noetherian local ring with maximal ideal m.

(1) Let J and B be an almost complete intersection of grade 3 and a matrix

defined above, respectively. Let x = x1, x2, x3 be a regular sequence in J defined

in (2.10). Let r be the type of J.

(i) Let r be even. Let A, Y , E, and S be matrices defined in (2.2), . . . , (2.5),
with entries in m, and pk1 an element defined in (2.11) for k = 1, 2, . . .,
r.

(ii) Let r be odd. Let A, S, Y , and Z be matrices defined in (2.2), . . . , (2.5),
with entries in m, and pk1 an element defined in (2.12) for k = 1, 2, . . .,
r.

If I is an ideal generated by x1, x2, x3, p11, p21, . . . , pr1, then I is a perfect ideal

of grade 3 linked to J by a regular sequence x and is type µ(J/(x)).
(2) Every perfect ideal of grade 3 linked to an almost complete intersection

J of grade 3 by a regular sequence x = x1, x2, x3 arises in the way of (1).

For further use we give the properties of matrices defined above.

Lemma 2.11 ([15]). With the above notation, let r be a positive integer.

(1) If r is even, then

(a) wE + CS = 0, (b) CF + EY = 0, (c) ZF + SY = 0.
(2) If r is odd, then

(a) SA = wI, (b) SY = ZAT , (c) wy = yAS.

The following example illustrates Theorem 2.10.

Example 2.12. Let R = Q[[x, y, z, t]] be the formal power series over the field
Q of rationals with indeterminates x, y, z, t and I the ideal generated by seven
elements

y4 − x2yz − xyz2 − y2z2 + x2yt+ xy2t+ y2zt− yt3,

xy2 − xyz + yz2 + x2t+ xyt− xzt− yzt− zt2,

x3 − xy2 + xyz + z3 − y2t− xzt+ yt2 − zt2,

− x3y + xy3 + xyz2 − 2y2zt+ xyt2,

x2y2 − y4 + y2z2 − 2xyzt+ y2t2,

x2yz + y3z − yz3 − 2xy2t+ yzt2,

− 2xy2z + x2yt+ y3t+ yz2t− yt3.

Let A and Y be 4× 3 and 4× 4 matrices given by

A =









t z y

z t x

y x t

x y z









and Y =









0 x 0 t

−x 0 y 0
0 −y 0 z

−t 0 −z 0









.

For i = 1, 2, 3 and j = 1, 2, 3, 4, let ci, ej and w be the elements in (2.2), (2.3),
(2.6), respectively. Let F be the matrix given in (2.7). Then we can rewrite I
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in the form

I = (yc1, c2, c3, ye1, ye2, ye3, ye4).

By Algebra system, CoCoA 4.7.4, we can check that x = yc1, c2, c3 is a regular
sequence. Then J = (x) : I = (x, w) is an almost complete intersection of
grade 3 with type 4. Thus it follows from Theorem 2.10 that I is a perfect
ideal of grade 3 with type 2. Let K and G be 3× 4 and 7× 7 matrices given by

(2.13) K =





t z y x

−yz −yt −xy −y2

y2 xy yt yz



 and G =





0 K

−F t Y



 .

The minimal free resolution F of R/I is

F : 0 // R2 f3
// R8 f2

// R7 f1
// R ,

where

f1 =
[

yc1 c2 c3 ye1 ye2 ye3 ye4
]

,

f2 =
[

G U
]

, U =
[

U1 0
]t
, U1 =

[

0 c3 −c2
]

,

f3 =





Q Ct

S1 Et

−y 0



 , Q =





−w

0
0



 , S1 =









s11
s12
s13
s14









.

3. Resolutions of two classes of Gorenstein ideals of grade 4

We construct the minimal free resolutions of two classes of Gorenstein ideals
of grade 4 mentioned in the introduction.

For a positive integer r with r > 1, let A and Y be the r × 3 matrix and
the r × r alternating matrix, respectively, defined in Section 2. Let K and G

be the 3 × r matrix and the (r + 3)× (r + 3) alternating matrix, respectively,
given by

(3.1) K =





a11 a21 · · · ar1
−a12 −a22 · · · −ar2
a13 a23 · · · ar3



 and G =





0 K

−Kt Y



 .

We define H to be an ideal associated with the pfaffians of some alternating
submatrices of the alternating matrix G as follows. If r is even, then H is an
ideal minimally generated by the maximal order pfaffians of G and the pfaffian
of the alternating submatrix Y of G, that is,

(3.2) H = (G1, G2, . . . , Gr+3, G123)

or an ideal minimally generated by the pfaffians of some r × r alternating
submatrices of G and the pfaffian of a certain (r + 2) × (r + 2) alternating
submatrix of G, that is,

(3.3) H = (Gijk , Gij4, Gij5, . . . , Gijr+3, Gk), where {i, j, k} = {1, 2, 3}.
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If r is odd, then H is an ideal minimally generated by the maximal order
pfaffians of the r × r alternating submatrix Y of G and the pfaffian of G, that
is,

(3.4) H = (G1234, G1235, . . . , G123r+3,Pf(G))

or an ideal minimally generated by the pfaffians of some (r + 1) × (r + 1)
alternating submatrices of G, that is,

(3.5) H = (Gki, Gkj , Gk4, Gk5, . . . , Gkr+3, Gij), where {i, j, k} = {1, 2, 3}.

Yong Sung Cho proved that if H is of grade 4, then H is Gorenstein by con-
structing the minimal free resolution F of R/H althoughH is slightly a different
form from [7].

Theorem 3.1 ([7]). Let R be a noetherian local ring with maximal ideal m.

With the above notation, let A and Y be matrices with entries in m. If H is of

grade 4, then H is Gorenstein.

Proof. For the case that r is even, the proof is referred to [7]. For the case that
r is odd, the proof is similar to that of the case that r is even. �

We construct the minimal free resolutions of R/H, where H is of the form
in class (E) or (O). Let ti be an element given by, for i = 1, 2, 3,

ti =

{

ci if r is even

Zi if r is odd.

Let H be an ideal generated by (r + 4) elements t1, t2, t3, w, p11, p21, . . . , pr1
defined in Section 2. We construct the minimal free resolution H of R/H

(3.6) H : 0 // R
h4

// Rr+4 h3
// R2(r+3) h2

// Rr+4 h1
// R .

Define h1 to be a map from R4+r to R given by

h1 =
[

t1 t2 t3 w p11 p21 · · · pr1
]

=
[

f1 P
]

,

where f1 is the 1× 4 matrix defined in Theorem 2.9 and P = (pk1) is the 1× r

matrix. First in order to define h2, we introduce following four matrices M(i)
for i = 1, 2, 3, 4. Let M(1) be a 3× 3 matrix defined by if r is even, then

M(1) =





0 D̄124 D̄134

−D̄124 0 D̄234

−D̄134 −D̄234 0





and if r is odd, then

M(1) =





−D̄123 0 0
0 −D̄123 0
0 0 −D̄123



 .
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Define M(2) to be a 3× r matrix given by

M(2) =

{

D̄123F if r is even

Ā = (āki) if r is odd,

where āki is an element defined by

ā1i = D̄124ai2 + D̄134ai3, ā2i = −D̄124ai1 + D̄234ai3, ā3i = −D̄134ai1 − D̄234ai2

for each i. Let M(3) be a 1× 3 matrix given by

M(3) = 0 if r is even and M(3) =
[

−D̄234 D̄134 −D̄124

]

if r is odd.

Finally we define M(4) to be a 1× r matrix given by if r is even, then

M(4) =
[

m1 m2 · · · mr

]

, where mi = ai1D̄234 + ai2D̄134 + ai3D̄124

for each i, and if r is odd, then

M(4) = 0.

Now we can define M to be a 4× (r + 3) matrix given by

M =





M(1) M(2)

M(3) M(4)



 ,

and N to be an r × (r + 3) matrix given by

N =
[

−F t Y
]

if r is even and N =
[

A Y
]

if r is odd.

Define h2 and h3 to be maps from R2(r+3) to Rr+3 and from Rr+3 to R2(r+3),

respectively, given by

h2 =





M f2

N 0



 and h3 =

[

0 I

I 0

]

ht
2,

where I is an (r + 3) × (r + 3) identity matrix. More concretely, if r is even,
then

h2 =





M(1) D̄123F Z S

0 M(4) C E

−F t Y 0 0



 and h3 =









Z Ct 0

St Et 0

−M(1) 0 −F

D̄123F
t M(4)t −Y









,

and if r is odd, then

h2 =





M(1) Ā Z S

M(3) 0 0 y

A Y 0 0



 and h3 =









−Z 0 0

St yt 0

M(1) M(3)t At

Āt 0 −Y









.

Finally we define h4 to be a map from R to Rr+3 given by

h4 = ht
1.
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Lemma 3.2. With the above notation, hihi+1 = 0 for i = 1, 2, 3.

Proof. We have two cases: r is even and r is odd. We prove Lemma 3.2 for the
even case. The proof for the odd case is similar to that of the even case.

(i) h1h2 = 0.
Let f1 and f2 be maps defined in Theorem 2.9. Since f1f2 = 0, it is sufficient

to show that f1M + PN = 0. First we show that CM(1)− PF t = 0.

(CM(1))11 = − c2D̄124 − c3D̄134,

(−PF t)11 = − (a11p11 + · · ·+ ar1pr1)

= − (e1a11 + · · ·+ erar1)D̄123

+ (s11a11 + s12a21 + · · ·+ s1rar1)D̄234

− (s21a11 + s22a21 + · · ·+ s2rar1)D̄134

+ (s31a11 + s32a21 + · · ·+ s3rar1)D̄124

= c3D̄134 + c2D̄124.

The last identity follows from parts (1) and (2) of Proposition 3.1 in [15], that
is,

EA = 0 and SA =





0 −c3 −c2
−c3 0 c1
c2 c1 0



 .

Hence
(CM(1))11 − (PF t)11 = 0.

In a similar way, we get

(CM(1))1i − (PF t)1i = 0 for i = 2, 3.

Finally we show that CM(2) + wM(4) + PY = 0. For each i, we have

(CM(2))1i = c1ai1D̄123 − c2ai2D̄123 + c3ai3D̄123,

(wM(4))1i = wmi = wai1D̄234 + wai2D̄134 + wai3D̄124,

(PY )1i = (e1y1i + e2y2i + · · ·+ eryri)D̄123

− (s11y1i + s12y2i + · · ·+ s1ryri)D̄234

+ (s21y1i + s22y2i + · · ·+ s2ryri)D̄134

− (s31y1i + s32y2i + · · ·+ s3ryri)D̄124.

Hence we have

(CM(2) + wM(4) + PY )1i

= D̄123(c1ai1 − c2ai2 + c3a13 + e1y1i + e2y2i + · · ·+ eryri)

− D̄234(−wai1 + s11y1i + s12y2i + · · ·+ s1ryri)

+ D̄134(−w(−ai2) + s21y1i + s22y2i + · · ·+ s2ryri)

− D̄124(−wai3 + s31y1i + s32y2i + · · ·+ s3ryri) = 0.
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The last identity follows from parts (1)(b) and (1)(c) of Lemma 2.11.
(ii) h2h3 = 0.
We note that

h2h3 =





M(1) D̄123F Z S

0 M(4) C E

−F t Y 0 0













Z Ct 0

St Et 0

−M(1) 0 −F

D̄123F
t M(4)t −Y









.

We complete the proof of this part by showing the following eight identities.
(a) M(1)Z + D̄123FSt − ZM(1) + SD̄123F

t = 0.
(i) M(1)Z − ZM(1) = 0. This follows from a direct computation.
(ii) D̄123FSt + SD̄123F

t = D̄123(FSt + SF t) = 0.

SF t =





0 c3 −c2
−c3 0 c1
c2 −c1 0



 ⇒ FSt + SF t = (SF t)t + SF t = 0.

(b) M(1)Ct + D̄123FEt + SM(4)t = 0.
Since EA = 0, AtEt = 0. So we have FEt = 0. For i = 1, we have

(M(1)Ct)i1 = c2D̄124 + c3D̄134,

(SM(4)t)i1 =
n
∑

k=1

s1kmk =
n
∑

k=1

s1k(ak1D̄234 + ak2D̄134 + ak3D̄124)

=

n
∑

k=1

(ak1s1kD̄234 + ak2s1kD̄134 + ak3s1kD̄124)

= −c3D̄134 − c2D̄124.

So we have

(M(1)Ct)11 + (SM(4)t)11 = 0.

Similarly, we have

(M(1)Ct)i1 + (SM(4)t)i1 = 0 for i = 2, 3.

Hence

M(1)Ct + D̄123FEt + SM(4)t = 0.

(c) ZF + SY = 0. This follows from part (1)(c) of Lemma 2.11.
(d) M(4)St − CM(1) + EM(2)t = 0. This follows from part (b).

M(4)St − CM(1) + ED̄123F
t = (M(1)Ct + D̄123FEt + SM(4)t)t = 0.

(e) M(4)Et + EM(4)t = 0. Since EA = 0, we have

M(4)Et =
r

∑

k=1

miei =
r

∑

k=1

(ak1D̄234 + ak2D̄134 + ak3D̄124)ek = 0,

EM(4)t = (M(4)Et)t = 0.

(f) CF + EY = 0. This follows from part (1)(b) of Lemma 2.11.
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(g) −F tZ + Y St = 0. This follows from part (1)(c) of Lemma 2.11:

−F tZ + Y St = −(ZtF + SY )t = −(ZF + SY )t = 0.

(h) −F tCt + Y Et = 0. This follows from part (1)(b) of Lemma 2.11:

−F tCt + Y Et = −(CF + EY )t = 0.

The second identity follows from the fact that Y t = −Y.

(iii) h3h4 = 0. This follows from the definitions of h3 and h4:

h3h4 =

[

0 I

I 0

]

ht
2h

t
1 =

[

0 I

I 0

]

(h1h2)
t = 0.

�

Now we show that if H is of grade 4, then H is Gorenstein by constructing
the minimal free resolution H of R/H.

Theorem 3.3. Let R be a noetherian local ring with maximal ideal m. With

the above notation, let A and Y be the matrices with entries in m.

(1) The sequence H of free R-modules and R-maps defined in (3.6) is a

complex of free R-modules and R-maps.

(2) Let di = D̄abc where {i, a, b, c} = {1, 2, 3, 4}. Assume that di is contained

in m for i = 1, 2, 3 and d4 is not contained in m if r is even, and that every di
is contained in m if r is odd. If H = I1(h1) is of grade 4, then the complex H

defined in (3.6) is exact and hence H is Gorenstein.

Proof. (1) The proof for this part follows from Lemma 3.2.
(2) The exactness of the complex H defined in (3.6) follows from the Buchs-

baum and Eisenbud acyclicity criterion [5]. The proof of this part is similar to
that of Theorem 3.1 [8]. �

4. Structure theorems for two classes of Gorenstein ideals

of grade 4

We give structure theorems for two classes of Gorenstein ideals of grade 4
mentioned in the introduction.

As shown by Golod [11], linkage can be used in the set of perfect ideals
in a noetherian ring. Hence in Lemma 1.4 [19], Gorenstein local ring can be
replaced with a noetherian local ring. If I and J are linked perfect ideals of
grade g such that I is Gorenstein, then µ(J) ≤ g+1 where µ(J) is the minimal
number of the generators for I. It will sometimes happen that J is a complete
intersection. The following lemma determines precisely when this occurs.

Lemma 4.1 ([19]). Let R be a noetherian local ring and I a perfect ideal of

grade g. Assume that K is a complete intersection of grade g which is properly

contained in I. Then K : I is a complete intersection if and only if I is a

complete intersection and µ(I/K) = 1.
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The following corollary gives us a characterization of complete intersections
of grade g+1 that every complete intersection of grade g+1 is expressed as the
sum of two complete intersections of grade g geometrically linked by a regular
sequence.

Corollary 4.2. Let R be a noetherian local ring and H a complete intersection

of grade g + 1. Then there exist two complete intersections I and J of grade g

such that

(1) they are geometrically linked by a regular sequence z = z1, z2, . . . , zg and

(2) the sum of these two ideals is equal to H.

Proof. LetH = (y1, y2, . . . , yg+1) be a complete intersection of grade g+1.Then
I = (y1, y2, . . . , yg) and J = (y1, y2, . . . , yg−1, yg+1) are complete intersections
of grade g. We set

z1 = y1, z2 = y2, . . . , zg−1 = yg−1, zg = ygyg+1.

Then z = z1, z2, . . . , zg is a regular sequence. Let K be a complete intersection
of grade g generated by z1, z2, . . . , zg. Then µ(I/K) = µ(J/K) = 1. By Lemma
4.1, K : I and K : J are complete intersections of grade g. By Theorem 2.6,
we have I = K : J and J = K : I. So I and J are linked by a regular sequence
z. Since I ∩ J = (z), they are geometrically linked. Clearly, H = I + J. �

Yong Sung Cho gave a structure theorem for a class of the Gorenstein ideals
H of grade 4 expressed as the sum of a Gorenstein ideal of grade 3 and an almost
complete intersection of grade 3 geometrically linked by a regular sequence.

Theorem 4.3 ([7]). Let R be a noetherian local ring with maximal ideal m.

(1) Let ˜G be the n× n alternating submatrix of G defined in (3.1) and t the

pfaffian of an alternating submatrix of G. If H = (Pfn−1( ˜G), t) is an ideal of

grade 4 defined in (3.2) or (3.3) or (3, 4) or (3.5), then H is a Gorenstein ideal

of grade 4 such that H is expressed as the sum of a Gorenstein ideal of grade 3
and an almost complete intersection of grade 3 geometrically linked by a regular

sequence.

(2) Every Gorenstein ideal of grade 4 expressed as the sum of a Gorenstein

ideal of grade 3 and an almost complete intersection of grade 3 geometrically

linked by a regular sequence arises in the way of (1).

Proof. (1) Let H = (Pfn−1( ˜G), t) be an ideal of grade 4 for some n × n al-

ternating submatrix ˜G of G. Then we have proved in Theorem 3.1 that H is

Gorenstein. Let I = Pfn−1( ˜G) be an ideal generated by the maximal order

pfaffians of ˜G. Since H is of grade 4, I is of grade g (3 ≤ g ≤ 4). It follows from
Lemma 2.3 that I is of grade 3. Theorem 2.4 implies that I is Gorenstein. Let
z = z1, z2, z3 be a regular sequence in I and J = (z) : I. Since I is a perfect
ideal of grade 3, by Theorem 2.6, J is a perfect ideal of grade 3. It is well
known from the Bass’ result that the type of I is equal to the minimal number
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of generators for the canonical module Ext3R(R/I,R) and

(4.1) Ext3R(R/I,R) ∼= (z) : I/(z) ∼= J/(z).

Since I is of type 1, it follows from Proposition 2.7 and (4.1) that J is an
almost complete intersection. Now we want to show that H = I + J and I is
geometrically linked to J. Let r be the type of J. We have two cases: r is even
or r is odd. Assume that r is even. By Theorem 2.9, J = (c1, c2, c3, w), where
ci is an element defined in (2.2) for i = 1, 2, 3 and w = Pf(Y ) is an element
defined in (2.6). We have two cases: r = 2 or r > 2.

Case (a) r = 2. In this case, G has the form

(4.2) G =





0 F

−F t Y



 =













0 0 0 a11 a21
0 0 0 −a12 −a22
0 0 0 a13 a23

−a11 a12 −a13 0 y12
−a21 a22 −a23 −y12 0













,

where A, F and Y are matrices in Section 2 with entries in m, respectively.
Moreover t = y12 and ci = detAi for i = 1, 2, 3, where Ai is the 2×2 submatrix
of A obtained by deleting the ith column of A. Since r is even, H has the
form defined in (3.2) or (3.3). Assume that H has the form defined in (3.2).
Then I = (c1, c2, c3). Hence I is of grade less than or equal to 2. This is
contrary to the fact that I is of grade 3. Hence we may assume that H has

the form defined in (3.3). For {i, j, k} = {1, 2, 3}, we take ˜G = G(i, j), the
alternating submatrix of G obtained by deleting rows and columns i, j of G.

Then H = (y12, ajk, aik, ck). We note that I = (y12, ajk, aik). Since H is of
grade 4, ck is regular on R/I. Hence ck is not contained in I. Since J is of type
2, it follows from the Bass’ result that µ(I/(z)) = 2. Since J = (c1, c2, c3, y12)
and ck is not contained in I, we can choose z = y12, ci, cj. Since ck is not
contained in I, I ∩ J = (z). Hence I and J are geometrically linked by z.

Clearly,

H = (y12, ajk, aik, ck) = I + J.

Case (b) r > 2. First we let H be an ideal of grade 4 defined in (3.2). In

this case, we take ˜G = G and t = G123. So H = (G1, G2, . . . , Gr+3, G123). Since
H is of grade 4, it follows from Lemma 2.3 and Theorem 2.4 that I = Pfr+2(G)
is a Gorenstein ideal of grade 3. Direct computations show that

Gi = ci for i = 1, 2, 3, Gi = ei for i = 4, 5, . . . , r + 3, and t = G123 = −w.

Hence I = (c1, c2, c3, e1, e2, . . . , er), where ei is an element defined in (2.3).
Since J is of type r, by the Bass’ result, µ(I/(z)) = r. Since H is of grade 4, t =
−w is regular on R/I. Hence w is not contained in I. Since J = (c1, c2, c3, w),
we can choose z = c1, c2, c3. Since w is not contained in I, I ∩ J = (z). Hence
I and J are geometrically linked by a regular sequence z. Clearly,

H = (c1, c2, c3, e1, e2, . . . , er, w) = I + J.
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Next we let H be an ideal of grade 4 defined in (3.3). The proof for this part is

similar to that of the case mentioned above. In this case we take ˜G = G(i, j)
and t = Gk, where {i, j, k} = {1, 2, 3}. Direct computations show that

Gijk = −w,Gij4 = ±sk1, Gij5 = ±sk2, . . . , Gijr+3 = ±skr, Gk = ck.

We note that I = Pfn−1(G(i, j)) = (w, sk1, sk2, . . . , skr) is Gorenstein. In this
case since ck is regular on R/I, we can choose z = ci, cj, w. The proof for the
case that r is odd is similar to that of the case (b).

(2) The proof is similar to that of part (2) in Theorem 3.4 [7]. �

The following example demonstrates Theorem 4.3.

Example 4.4. Let R = C[[x, y, z, t]] be the formal power series over the field
C of complex numbers with indeterminates x, y, z, t. Let A and Y be the 4× 3
matrix and the 4× 4 alternating matrix given by

A =









x y t

y x z

z t x

t z y









and Y =









0 x 0 t

−x 0 y 0
0 −y 0 z

−t 0 −z 0









.

Define G to be a 7× 7 alternating matrix given by

G =





















0 0 0 x y z t

0 0 0 −y −x −t −z

0 0 0 t z x y

−x y −t 0 x 0 t

−y x −z −x 0 y 0
−z t −x 0 −y 0 z

−t z −y −t 0 −z 0





















.

Let ci and ei be elements defined in (2.2) and (2.3). Then

c1 = −y3 − x2z − yz2 − x2t+ xyt+ xzt+ yzt+ zt2,

c2 = −xy2 + xyz − xz2 − x2t− xyt+ yzt+ z2t+ yt2,

c3 = −x2z − xyz + y2z + xz2 + y2t+ xzt− xt2 − yt2,

e1 = −2xyz + z3 + x2t+ y2t− zt2, e2 = x2z + y2z − 2xyt− z2t+ t3,

e3 = x2y − y3 − xz2 + 2yzt− xt2, e4 = −x3 + xy2 − yz2 + 2xzt− yt2

and w = Pf(Y ) = −(xz + yt). Using CoCoA 4.7.4, we can easily check that
c = c1, c2, c3 is a regular sequence. I = (c1, c2, c3, e1, e2, e3, e4) is a Gorenstein
ideal of grade 3 and the minimal free resolution F of R/I is

F : 0 // R
f3

// R7 f2
// R7 f1

// R,

where

f1 =
[

c1 c2 c3 e1 e2 e3 e4
]

, f2 =

[

0 F

−FT Y

]

, f3 = fT
1 ,
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and F is a matrix defined in (2.7). Theorem 2.6 and part (a) of Lemma
2.11 say that J = (c) : I = (c1, c2, c3, w) is an almost complete intersection
of grade 3. It follows from the Bass’ result that I is of type 1. We have
proved in the proof of Theorem 4.3 that I and J are geometrically linked by a
regular sequence c. We note that w is regular on R/I. Hence by Theorem 2.8,
H = I + J = (c1, c2, c3, w, e1, e2, e3, e4) is a Gorenstein ideal of grade 4. Let D
be a 7 × 7 diagonal matrix whose main diagonal entries are equal to −w and
f2 the row vector of the maximal order pfaffians of f2. Then the minimal free
resolution H of R/L is

H = F⊗G : 0 // R
h4

// R8 h3
// R14 h2

// R8 h1
// R ,

where

h1 =
[

f2 w
]

, h2 =

[

f2 D

0 f2

]

, h3 =

[

ft2 −D

0 f2

]

, h4 =

[

−w

ft2

]

and

G : 0 // R
w

// R

is a free complex.

Let r be a positive integer with r > 1. Let I = Pfr+2(T ) be a Gorenstein
ideal of grade 3 for an (r + 3) × (r + 3) alternating matrix T which is not a
complete intersection, and u a regular on R/I. Under what condition, does the
Gorenstein ideal (I, u) of grade 4 has the form in Theorem 4.3?

Corollary 4.5. Let R be a noetherian local ring. With the above notation, if

(I, u) is of grade 4, then u is contained in (x) : I for a regular sequence x in I

if and only if (I, u) has the form in Theorem 4.3.

Proof. Let J = (x) : I. Since I is a Gorenstein ideal of grade 3 which is not
a complete intersection, by Proposition 2.7 and Lemma 4.1, J is an almost
complete intersection of grade 3. By Theorem 4.3, it suffices to show that I

and J are geometrically linked by a regular sequence x. Since u is contained in
(x) : I = J, we have J = (x, u). Since u is regular on R/I, u is not contained
in I. Thus I ∩J = (x) and hence I and J are geometrically linked by a regular
sequence x. Clearly, (I, u) = I+J. Theorem 4.3 gives us the proof for this part.

To prove the converse, we assume that u is not contained in (x) : I. Let
J = (x) : I. Since (I, u) has the form in Theorem 4.3, (I, u) = I + J. Since u

is not contained in J, u is contained in I. Hence (I, u) is of grade 3. This is
contrary to the assumption that (I, u) is of grade 4. �

The following example demonstrates Corollary 4.5.

Example 4.6. Let C be the field of complex numbers and R = C[[x, y, z, t]] the
formal power series ring over C with indeterminates x, y, z, and t. Let H5 be a
5×5 alternating matrix introduced by Buchsbaum and Eisenbud [6, Proposition
6.2]. By Theorem 2.4, I = Pf4(H5) = (y2,−xz, xy+z2,−yz, x2) is a Gorenstein
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ideal of grade 3. Since t is regular on R/I, (y2,−xz, xy + z2,−yz, x2, t) is a
Gorenstein ideal of grade 4. First we show that there is no regular sequence
z = z1, z2, z3 in I such that t is contained in (z) : I. If not, then t is contained
in (a) : I for some regular sequence a = a1, a2, a3 in I. Let J = (a) : I.

Since I is Gorenstein, by Proposition 2.7, J = (a, s) is an almost complete
intersection of grade 3 for some element s of R. Consider the ideal K = (a, t).
Then K is contained in J. Since R/K is isomorphic to C[[x, y, z]]/(a) and
dim C[[x, y, z]]/(a) = 0, dim R/K = 0. Since R is Cohen-Macaulay, we have

4 = dimR = dim(R/K) + ht K = 0 + ht K = 0 + grade K.

Hence K is of grade 4. However since J = (a) : I and J is a perfect ideal
of grade 3, by Theorem 2.6, J is of grade 3. Since K is contained in J, 4 =
gradeK ≤ gradeJ = 3. This is contrary. Thus t is not contained in J. Hence
we can see from the argument mentioned above that for any regular sequence
z in I, (y2,−xz, xy+ z2,−yz, x2, t) 6= I + J where I is geometrically linked to
J by a regular sequence z in I ∩ J.

We give a structure theorem for class (E). Kang and Ko introduced the skew-
symmetrizable matrix in [16] to define a complete matrix of grade 4 which plays
a key role in describing a structure theorem for complete intersections of grade
4.

Definition 4.7. Let R be a commutative ring with identity. An n×nmatrixX

over R is said to be skew-symmetrizable if there exist nonzero diagonal matrices
D′ = diag{u1, u2, . . . , un} and D = diag{w1, w2, . . . , wn} with entries in R such
that D′XD is an alternating matrix.

We denote by GAn the set of all n × n skew-symmetrizable matrices over
R. Let X be an n× n skew-symmetrizable matrix. We define A(X) to be the
alternating matrix induced by X as follows:

A(X) =

{

X if X is alternating

D′XD if X is not alternating.

For example, if r is even, then

(4.3) L =





M(1) M(2)

−F t Y





is an (r + 3) × (r + 3) skew-symmetrizable submatrix of h2 in the complex H

defined in (3.6) which becomes an alternating matrix A(L) by multiplying the
first three columns of L by D̄123. Hence A(L) has the following form

(4.4) A(L) =





D̄123M(1) M(2)

−M(2)t Y



 .
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The maximal order pfaffians of A(L) are expressed as R-linear combination of
c1, c2, c3, w, p11, p21, . . . , pr1.

Lemma 4.8. With the above notation,

A(L)i =

{

(−1)i+1d4diw + d24ci for i = 1, 2, 3,

(−1)i+1d24pi′1 for i = 4, 5, . . . , r + 3,

where

{i, a, b, c} = {1, 2, 3, 4}, di = D̄abc for i = 1, 2, 3, and i = i′ + 3.

Proof. Let A(L) = (˜lij). From Lemma 2.2 we have

A(L)1 =

r+3
∑

i=1

˜li2A(L)i12 = ˜l32A(L)312 +

r+3
∑

i=4

˜li2A(L)i12

= D̄123D̄234w +

r+3
∑

i=4

˜li2A(L)i12

and
r+3
∑

i=4

˜li2A(L)i12 =

r+3
∑

i=4

˜li2

r+3
∑

j=1

˜lj3A(L)ji123 =
∑

4≤i<j≤r+3

∣

∣

∣

∣

∣

˜li2 ˜li3
˜lj2 ˜lj3

∣

∣

∣

∣

∣

A(L)ji123

= D̄2
123

∑

1≤u<v≤r

∣

∣

∣

∣

au2 au3
av2 av3

∣

∣

∣

∣

Yuv = D̄2
123c1.

Hence we have

A(L)1 = D̄123D̄234w + D̄2
123c1.

Similarly, we have the following for i = 1, 2, 3,

A(L)i = (−1)i+1d4diw + d24ci, where {i, a, b, c} = {1, 2, 3, 4} and di = D̄abc.

For i = 4, we have

A(L)4 = −

r+3
∑

i=1

˜li3A(L)i34 = −˜l13A(L)134 −
˜l23A(L)234 −

r+3
∑

i=5

˜li3A(L)i34.

Direct computations by Lemma 2.2 show that

−˜l13A(L)134 = −D̄123D̄134

r+3
∑

k=1

˜lk2A(L)k1234 = −D̄123D̄134

r+3
∑

k=5

˜lk2A(L)k1234

= −D̄2
123D̄134

r
∑

l=1

al2Yl1 = D̄2
123D̄134

r
∑

l=1

Y1lal2 = −D̄2
123D̄134s21,

−˜l23A(L)234 = D̄123D̄234

r+3
∑

k=1

˜lk1A(L)k1234 = D̄123D̄234

r+3
∑

k=5

˜lk1A(L)k1234
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= −D̄2
123D̄234

r
∑

l=1

al1Yl1 = D̄2
123D̄234

r
∑

l=1

Y1lal1 = D̄2
123D̄234s11,

−

r+3
∑

i=5

˜li3A(L)i34 =

r+3
∑

i=5

˜li3

r+3
∑

j=1

˜lj2A(L)j2i34

=

r+3
∑

i=5

˜li3




˜l12A(L)12i34 +

r+3
∑

j=2

˜lj2A(L)j2i34





=

r+3
∑

i=5

˜li3˜l12A(L)12i34 +

r+3
∑

i=5

˜li3

r+3
∑

j=2

˜lj2A(L)j2i34

=

r+3
∑

i=5

˜l12˜li3A(L)i1234 +

r+3
∑

i=5

r+3
∑

j=5

˜lj2˜li3A(L)j2i34

= −D̄2
123D̄124

r
∑

i=1

Yi1ai3 − D̄2
123

r+3
∑

i=5

r+3
∑

j=5

aj2ai3A(L)j2i34

= D̄2
123D̄124

r
∑

i=1

Y1iai3 − D̄2
123

r+3
∑

i=5

r+3
∑

j=5

aj2ai3A(L)234ij

= D̄2
123D̄124s31 − D̄2

123

r+3
∑

i=5

r+3
∑

j=5

aj2ai3A(L)234ij .

Since

A(L)234ij= −
r+3
∑

k=1

˜lk1A(L)k1234ij = −
r+3
∑

k=1

˜lk1A(L)1234ijk= D̄123

r
∑

k′=1

ak′1Y1i′j′k′ ,

where i = i′ + 3 and j = j′ + 3, we have

−

r+3
∑

i=1

r+3
∑

j=1

aj2ai3A(L)234ij = −D̄123

r
∑

i=1

r
∑

j=1

r
∑

k=1

ak1aj2ai3Y1ijk

= − D̄123

∑

1≤i<j<k≤r

(ak1aj2ai3 − aj1ak2ai3 − ak1ai2aj3+ ai1ak2aj3+ aj1ai2ak3

− ai1aj2ak3)Y1ijk = −D̄123

∑

1≤i<j<k≤r

−DijkY1ijk = −D̄123e1.

Hence we have

A(L)4 = −

r+3
∑

i=1

˜li3A(L)i34 = −˜l13A(L)134 −
˜l23A(L)234 −

r+3
∑

i=5

˜li3A(L)i34

= D̄2
123

(

−D̄134s21 + D̄234s11 +D124s31 − D̄123e1
)
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= −D̄2
123

(

D̄123e1 − (D̄234s11 − D̄134s21 +D124s31)
)

= −D̄2
123p11.

For i = 5, 6, . . . , r + 3, in a similar way, we have the following

A(L)i = (−1)i+1D̄2
123pi′1 for i = 4, 5, . . . , r + 3, and i = i′ + 3. �

Now we define Pfr+2(A(L)) to be the ideal obtained from the alternating
matrix A(L) defined in (4.4) as follows.

Definition 4.9. Let R be a commutative ring with identity. With the above
notation, let L be the skew-symmetrizable matrix defined in (4.3). We set

Li =

{

(A(L)i + (−1)id4diw)/d
2
4 for i = 1, 2, 3,

(−1)i+1A(L)i/d
2
4 for i = 4, 5, . . . , r + 3.

We define Pfr+2(A(L)) to be the ideal generated by (r+3) elements L1, L2, . . .,
Lr+3.

We know that there exist n×n skew-symmetrizable matrices characterizing
structures of some classes of perfect ideals of grade 3 with types 2 and 3 [9].

Now we are in a good position to describe one of our main theorems, a
structure theorem for class (E) of Gorenstein ideals of grade 4.

Theorem 4.10. Let R be a noetherian local ring with maximal ideal m.

(1) With the above notation, we let di be an element defined in Theorem 3.3.
We assume that x is a regular sequence in an almost complete intersection of

grade 3 with even type r and 2 ≤ µ(J/(x)) ≤ 4. If H = (Pfr+2(A(L)),A(L)123)
is an ideal of grade 4, then H is a Gorenstein ideal such that

(a) H = I+J where I is a perfect ideal of grade 3 which is not Gorenstein

and J is a type r almost complete intersection of grade 3.
(b) I and J are geometrically linked by the regular sequence x = x1, x2, x3

in I ∩ J.

(2) Every Gorenstein ideal of grade 4 expressed as the sum of a perfect ideal

I of grade 3 with type τ and 2 ≤ τ ≤ 4 and an almost complete intersection J of

grade 3 with even type geometrically linked by a regular sequence x = x1, x2, x3

in I ∩ J arises in the way of (1).

Proof. (1) Since di is contained in m for i = 1, 2, 3 and H is of grade 4, it
follows from Theorem 3.3 that H is Gorenstein. Let J be an almost com-
plete intersection of grade 3 with even type r. Theorem 2.9 says that J =
(c1, c2, c3, w). Let x = x1, x2, x3 be a regular sequence in J with 2 ≤ µ(J/(x)) ≤
4 and I = (x) : J. Then it follows from Theorems 2.6 and 2.10 that I =
(x1, x2, x3, p11, p21, . . . , pr1) is a perfect ideal of grade 3 with type µ(J/(x)).
Since I is of type µ(J/(x)) and µ(J/(x)) 6= 1, I is not Gorenstein. Since
I + J = (c1, c2, c3, w, p11, p21, . . . , pr1), by Lemma 4.8, H = I + J. This prove
part (a) of Theorem 4.10. Now we prove part (b) of it. We have three cases:
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µ(J/(x)) = 2, µ(J/(x)) = 3 and µ(J/(x)) = 4. We consider only the first case.
For other cases, the proofs are similar to that of the first case. Assume that
µ(J/(x)) = 2. This implies that only two of the four generators for J are con-
tained in the complete intersection (x). We have two cases: (i) ci and cj are
contained in (x) or (ii) ck and w are contained in (x). We prove only the first
case. The proof of other case is the same as that of the first case.

Case (i) : ci and cj are contained in (x). In this case we may assume that
xi = ci, xj = cj , xk = ack + bw for some elements a and b of R. Moreover, ck
and w are not contained in (x) for k 6= i, j. We want to show that both ck and
w are not contained in I. If both ck and w are contained in I, then I = H. This
is contrary since I is of grade 3 and H is of grade 4. Assume that only one of
the two is contained in I, say ck. Then we have I = (c1, c2, c3, p11, p21, . . . , pr1).
Hence µ(I/(x)) = r + 1. However since J is of type r, the Bass’ result says
that µ(I/(x)) = r. This is contrary. Thus ck and w are not contained in I and
I ∩ J = (x). So I and J are geometrically linked by the regular sequence x.

Case (ii) : ck and w are contained in (x). The proof of this part is the same
as that of the case (i).

(2) Let I and J be a perfect ideal of grade 3 with type τ and 2 ≤ τ ≤ 4 and
an almost complete intersection of grade 3 with even type r, respectively. Since
I is of type τ and τ ≥ 2, I is not Gorenstein. Since I is geometrically linked
to J by the regular sequence x, by Theorem 2.10, I is the following form:
I = (x1, x2, x3, p11, p21, . . . , pr1), where every ci and every pk1 are elements
defined in (2.2) and (2.11). Since J is of type r and r is even, by Theorem 2.9,
J = (c1, c2, c3, w). Thus

H = I + J = (c1, c2, c3, w, p11, p21, . . . , pr1).

Let L be the (r + 3)× (r + 3) generalized alternating matrix defined in (4.3).

It follows from Lemma 4.8 that H = (Pfr+2(A(L)),A(L)123). �

The following example illustrates Theorem 4.10.

Example 4.11. Let R and I be the ring and ideal defined in Example 2.12,
respectively. Let x = yc1, c2, c3 be a regular sequence mentioned in Example
2.12. Then J = (x) : I = (c1, c2, c3, w) is an almost complete intersection of
grade 3 with type 4. Then I and J are geometrically linked by the regular
sequence. By Theorem 2.8, H = I + J = (c1, c2, c3, w, ye1, ye2, ye3, ye4) is a
Gorenstein ideal of grade 4. The minimal free resolution H of R/H is

H : 0 // R
h4

// R8 h3
// R14 h2

// R8 h1
// R ,

where

h1 =
[

c1 c2 c3 w ye1 ye2 ye3 ye4
]

,

h2 =





0 yF Z S

0 0 C E

−F t Y 0 0



 , h3 =

[

0 I

I 0

]

ht
2, h4 = ht

1
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and I is a 7× 7 identity matrix. We note that the following submatrix of h2 is
a 7× 7 skew-symmetrizable matrix

G̃ =





0 yF

−F t Y



 .

By multiplying the first three columns of G̃ by y, G̃ becomes an alternating
matrix. Simple computation shows that the generators for H are

c1 = A(G̃)1/y
2, c2 = A(G̃)2/y

2, c3 = A(G̃)3/y
2,

ye1 = A(G̃)4/y
2, . . . , ye4 = A(G̃)7/y

2,

w = A(G̃)123.

We give a structure theorem for class (O). We note that r is odd in this case.
To describe a structure theorem for this class, we define an (r + 3) × (r + 3)

alternating matrix L̃ as follows:

(4.5) T = L̃ =





0 At

−A Y



 ,

where 0 is a 3× 3 zero matrix.

Lemma 4.12. With the above notation,

(1) Tij = (−1)k+1Zk for {i, j, k} = {1, 2, 3},
(2) Pf(T)=w defined in (2.6),
(3) Tl t+3 = slt for l = 1, 2, 3, and for t = 1, 2, . . . , r,
(4) T123t = −Yt−3 for t = 4, 5, . . . , r + 3,
(5) pt1 = d4T123t+3 + (T1 t+3d1 − T2 t+3d2 + T3 t+3d3) for t = 1, 2, . . . , r,

where di is an element defined in Theorem 3.3 for i = 1, 2, 3, 4.

Proof. The first four parts of Lemma 4.12 follow from Lemma 2.2 and part (5)
does from (2.12). �

Now we are ready to describe a structure theorem for class (O).

Theorem 4.13. Let R be a noetherian local ring with maximal ideal m.

(1) With the above notation, we let di be an element defined in Theorem

3.3 and h̄i = T123 i+3d4 + T1 i+3d1 − T2 i+3d2 + T3 i+3d3 an element defined

in part (5) of Lemma 4.12 for i = 1, 2, . . . , r. We assume that x is a regular

sequence in an almost complete intersection of grade 3 with odd type r and

2 ≤ µ(J/(x)) ≤ 4. If H = (Z1, Z2, Z3, w, h̄1, h̄2, . . . , h̄r) has an ideal of grade

4, then H is a Gorenstein ideal such that

(a) H = I+J where I is a perfect ideal of grade 3 which is not Gorenstein

and J is a type r almost complete intersection of grade 3.
(b) I and J are geometrically linked by the regular sequence x = x1, x2, x3

in I ∩ J.
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(2) Every Gorenstein ideal of grade 4 expressed as the sum of a perfect ideal

I of grade 3 with type τ and 2 ≤ τ ≤ 4 and an almost complete intersection J of

grade 3 with odd type geometrically linked by a regular sequence x = x1, x2, x3

in I ∩ J arises in the way of (1).

Proof. (1) Proof of this part is similar to that of part (1) of Theorem 4.10.
(2) The argument mentioned in part (2) of Theorem 4.10 gives us proof of this
part. In this case Lemma 4.12 is used. �

The following example illustrates Theorem 4.13.

Example 4.14. Let R be the formal power series ring defined in Example
2.12. Let I be an ideal generated by eight elements

− x4 + 2x2y2 − x3z − xy2z − x2z2 + xz3 + x2yt− xyzt+ x2t2,

− x2y2 + xy3 + y4 − 2x2yz + xy2z − 2y2z2 − x2yt+ 2yz2t− y2t2,

x2y + y3 − x2z − 3xyz + y2z − z3 + x2t+ xyt− yzt+ zt2,

− x3y + xy3 − xyz2, x2y2 − xy2z + xyzt, −x3y + xyz2 − xy2t,

x2y2 − xy2z + x2yt, xy3 − 2x2yz.

Let A and Y be a 5 × 3 matrix and a 5 × 5 alternating matrix, respectively,
given by

A =













x y z

y z t

z t 0
t 0 x

0 x y













and Y =













0 x y z t

−x 0 x y z

−y −x 0 z y

−z −y −z 0 x

−t −z −y −x 0













.

For i = 1, 2, 3, and for j = 1, 2, . . . , 5, let Zi and w be the elements defined in
(2.5) and (2.6), respectively. Then

w = x4 − x2y2 − xy3 + x3z + x2yz + xz3 + yz3 + 2xy2t− x2zt− 2xyzt

− 2y2zt− 2xz2t− yz2t+ x2t2 + 3xyt2 + y2t2 + z2t2 − t4,

and we can rewrite I in the form

I = (xZ1, yZ2, Z3,−xyY1,−xyY2,−xyY3,−xyY4,−xyY5).

We can check by Algebra System, CoCoA 4.7.4, that x = xZ1, yZ2, Z3 is a
regular sequence. Then J = (x) : I = (Z1, Z2, Z3, w) is an almost complete
intersection of grade 3 with type 5. Thus it follows from Theorem 2.10 that
I is a perfect ideal of grade 3 with type 3. Since J is an odd type, by (2.9)
J = (Z1, Z2, Z3, w). Since I ∩ J = (x), by Theorem 2.7, H = I + J is a
Gorenstein ideal of grade 4 which has the form

H = (Z1, Z2, Z3, w, xyY1, xyY2, xyY3, xyY4, xyY5).
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On the other hand, we can get a 4× 3 matrix B such that

B =









x 0 0
0 y 0
0 0 1
0 0 0









and x =
[

Z1 Z2 Z3

]

B.

Hence we have D̄123 = xy and D̄ijk = 0 for {i, j, k} 6= {1, 2, 3}. Then the
matrices M(1),M(2),M(3) defined for an odd type r in section 3 are given by

M(1) = diag{−xy,−xy,−xy}, M(2) = 0, M(3) = 0,

and the entries of a matrix S defined for the case are

s11 = x3 + xyz − yz2 + y2t+ xt2, s21 = −xy2 + xz2 + xyt− xzt+ yt2,

s31 = xz2 − x2t− xyt− yzt+ zt2, . . . , s35 = −xz2 + z3 + 2xyt− 2yzt+ xt2.

The minimal free resolution H of R/H is

H : 0 // R
h4

// R9 h3
// R16 h2

// R9 h1
// R ,

where

h1 =
[

Z1 Z2 Z3 w xyY1 xyY2 xyY3 xyY4 xyY5

]

,

h2 =





M(1) 0 Z S

0 0 0 y

A Y 0 0



 , h3 =









−Z 0 0

St yt 0

M(1) 0 At

Āt 0 −Y









,

h4 = ht
1.

We note that the following submatrix of h2 is a 8× 8 alternating matrix

T =





0 At

−A Y



 .

Simple computations show the identities in Lemma 4.12.
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