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QUALITATIVE UNCERTAINTY PRINCIPLE

FOR GABOR TRANSFORM

Ashish Bansal and Ajay Kumar

Abstract. We discuss the qualitative uncertainty principle for Gabor
transform on certain classes of the locally compact groups, like abelian
groups, Rn

×K, K ⋉Rn where K is compact group. We shall also prove
a weaker version of qualitative uncertainty principle for Gabor transform
in case of compact groups.

1. Introduction

Let G be a second countable, unimodular, locally compact group of type I

with the dual space ̂G. Let m denote the Haar measure on G and µ denote the

Plancherel measure on ̂G. For f ∈ L1(G), the Fourier transform ̂f is defined
as the operator

̂f(γ) =

∫

G

f(x) γ(x)∗ dm(x).

Let us define

Af = {x ∈ G : f(x) 6= 0} and Bf = {γ ∈ ̂G : ̂f(γ) 6= 0}.

Uncertainty principles have been studied extensively in the past fifty years.
Although there is a variety of uncertainty principles, the common idea commu-
nicated by them is that a non-zero function and its Fourier transform cannot
both be sharply localized. The qualitative uncertainty principle (QUP) for
Fourier transform can be stated as follows:

If f ∈ L1(G) satisfies m(Af ) <∞ and µ(Bf ) <∞, then f = 0 a.e.

The QUP for Rn was proved by Benedicks [2]. The principle has been general-
ized for several classes of locally compact groups in [7], [8], [9] and others. For
more details, refer to the survey [4].

The representation of f as a function of x is usually called time-representation,

whereas the representation of the Fourier transform f̂ as a function of ω is called
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frequency-representation. The Fourier transform is commonly used for analyz-
ing the frequency properties of a given signal. After transforming a signal
using Fourier transform, the information about time is lost and it is hard to
tell where a certain frequency occurs. This problem can be countered by using
joint time-frequency representation, i.e., Gabor transform. It uses a window
function to localize the Fourier transform, then shift the window to another
position, and so on. This property of the Gabor transform provides the local
aspect of the Fourier transform with time resolution equal to the size of the
window.

Let ψ ∈ L2(R) be a fixed non-zero function usually called a window function.
The Gabor transform of a function f ∈ L2(R) with respect to the window
function ψ is defined by

Gψf : R× ̂R → C

such that

Gψf(t, ω) =

∫

R

f(x) ψ(x− t) e−2πiωx dx

for all (t, ω) ∈ R× ̂R.
In [11], it has been proved that for f ∈ L2(R) \ {0} and a window function

ψ, the support of Gψf is a set of infinite Lebesgue measure.
The continuous Gabor transform for second countable, unimodular and type

I group has been defined in [5]. A brief description is given in Section 2. We
will be interested in the following so called qualitative uncertainty principle for
Gabor transform:

If f ∈ L2(G) and ψ is a window function satisfying

(m× µ)({(x, γ) : Gψf(x, γ) 6= 0}) <∞, then f = 0 a.e.

In Section 3, we shall prove a necessary and sufficient condition for a second
countable, locally compact, abelian group to have QUP. In Section 4, for a
second countable, locally compact, unimodular, type I group G and a closed,
normal subgroup H of G such that G/H is compact, we prove that if H has
QUP, then so does G. In the last section, we shall prove the necessary and
sufficient condition for a weaker form of QUP for Gabor transform to be true
for a compact group G.

2. Continuous Gabor transform

Let G be a second countable, unimodular group of type I. Let dx denote

the Haar measure on G and dπ the Plancherel measure on ̂G. Let HS(Hπ)
denote the set of all Hilbert-Schmidt operators on the Hilbert space Hπ of the

representation π. For each (x, π) ∈ G× ̂G, we define

H(x,π) = π(x)HS(Hπ),
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where π(x)HS(Hπ) = {π(x)T : T ∈ HS(Hπ)} and H(x,π) forms a Hilbert space
with the inner product given by

〈π(x)T, π(x)S〉H(x,π)
= tr (S∗T ) = 〈T, S〉HS(Hπ).

Also, H(x,π) = HS(Hπ) for all (x, π) ∈ G × ̂G. The family {H(x,π)}(x,π)∈G×Ĝ

of Hilbert spaces indexed by G × ̂G is a field of Hilbert spaces over G × ̂G.

Let H2(G× ̂G) denote the direct integral of {H(x,π)}(x,π)∈G×Ĝ
with respect to

the product measure dx dπ, i.e., the space of all measurable vector fields F on

G× ̂G such that

‖F‖2
H2(G×Ĝ)

=

∫

G×Ĝ

‖F (x, π)‖2(x,π) dx dπ <∞.

It can be easily verified that H2(G × ̂G) forms a Hilbert space with the inner
product given by

〈F,K〉
H2(G×Ĝ) =

∫

G×Ĝ

tr [F (x, π)K(x, π)∗] dx dπ.

Let f ∈ Cc(G), the set of all continuous complex-valued functions on G with
compact supports and ψ a fixed non-zero function in L2(G) usually called

window function. For (x, π) ∈ G × ̂G, the continuous Gabor Transform of f
with respect to the window function ψ can be defined as a measurable field of

operators on G× ̂G by

Gψf(x, π) :=

∫

G

f(y) ψ(x−1y) π(y)∗ dy.(2.1)

The operator-valued integral (2.1) is considered in the weak-sense, i.e., for each

(x, π) ∈ G× ̂G and ξ, η ∈ Hπ , we have

〈Gψf(x, π)ξ, η〉 =

∫

G

f(y) ψ(x−1y) 〈π(y)∗ξ, η〉 dy.

For each x ∈ G, define fψx : G→ C by

fψx (y) := f(y) ψ(x−1y).(2.2)

Since, f ∈ Cc(G) and ψ ∈ L2(G), we have fψx ∈ L1(G) ∩ L2(G) for all x ∈ G.
The Fourier transform is given by

̂

f
ψ
x (π) =

∫

G

fψx (y) π(y)
∗ dy =

∫

G

f(y) ψ(x−1y) π(y)∗ dy = Gψf(x, π).

Also, using Plancherel theorem [3, Theorem 7.44], we see that
̂

f
ψ
x (π) is a

Hilbert-Schmidt operator for almost all π ∈ ̂G. Therefore, Gψf(x, π) is a

Hilbert-Schmidt operator for all x ∈ G and for almost all π ∈ ̂G. The following
result can be seen in [5].
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Theorem 2.1. Let ψ be a window function. Then, for each f ∈ Cc(G), we
have

‖Gψf‖H2(G×Ĝ) = ‖ψ‖2 ‖f‖2.(2.3)

It means that the continuous Gabor transform Gψ : Cc(G) → H2(G × ̂G)
defined by f 7→ Gψf is a multiple of an isometry. So, we can extend Gψ
uniquely to a bounded linear operator from L2(G) into a closed subspace H of

H2(G × ̂G) which we still denote by Gψ and this extension satisfies (2.3) for
each f ∈ L2(G). It follows from [1] that for f ∈ L2(G) and a window function

ψ ∈ L2(G), we have Gψf(x, π) =
̂

f
ψ
x (π).

3. QUP for Gabor transform

In this section G will be a second countable, locally compact, abelian group

with Haar measure m. Let ̂G be the dual group with Plancherel measure µ.
Before discussing the QUP for Gabor transform on G, we shall first establish

some important properties of Gabor transform. For x ∈ G, σ ∈ ̂G and f ∈
L2(G), we define

(xf)(y) = f(xy) and (σf)(x) = σ(x)f(x).

Lemma 3.1. For f ∈ L2(G) and a window function ψ, we have

(i) Gψ(x0
f)(x, γ) = γ(x0) Gψf(x0x, γ) for x0, x ∈ G and γ ∈ ̂G.

(ii) Gψ(σf)(x, γ) = Gψf(x, σ
−1γ) for x ∈ G and σ, γ ∈ ̂G.

Proof. (i) For x0, x ∈ G and γ ∈ ̂G, we have

Gψ(x0
f)(x, γ) =

∫

G

f(x0y) ψ(x−1y) γ(y−1) dm(y)

=

∫

G

f(y) ψ(x−1x−1
0 y) γ(y−1x0) dm(y)

= γ(x0)

∫

G

f(y) ψ((x0x)−1y) γ(y−1) dm(y)

= γ(x0) Gψf(x0x, γ).

(ii) For x ∈ G and σ, γ ∈ ̂G, we observe that

Gψ(σf)(x, γ) =

∫

G

(σf)(y) ψ(x−1y) γ(y−1) dm(y)

=

∫

G

f(y) ψ(x−1y) (σ−1γ)(y−1) dm(y)

= Gψf(x, σ
−1γ). �

Definition 3.2. Let H be a Hilbert space of C-valued functions defined on a
non-empty set X . A function k : X ×X → C is called a reproducing kernel of
H if it satisfies
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(i) kx ∈ H for all x ∈ X , where kx(y) = k(y, x) for all y ∈ X .
(ii) 〈f, kx〉H = f(x) for all x ∈ X and f ∈ H.

One can easily verify that if reproducing kernel of H exists, then it is unique.

Definition 3.3. A Hilbert space H is a reproducing kernel Hilbert space
(r.k.H.s.) if the evaluation functionals Ft : H → C given by Ft(f) = f(t)
for all f ∈ H, are bounded.

We can observe that a Hilbert space H is a r.k.H.s. if and only if H has a
reproducing kernel. Let ψ be a window function. Then, we define

Gψ(L
2(G)) = {Gψf : f ∈ L2(G)} ⊆ L2(G× ̂G).

This space satisfies a very important property as shown in the following lemma:

Lemma 3.4. Gψ(L
2(G)) is a r.k.H.s. with pointwise bounded kernel.

Proof. Define Kψ : (G× ̂G)× (G× ̂G) → C by

Kψ(x, γ, x
′, γ′) =

1

‖ψ‖22
〈ψ(x′,γ′), ψ(x,γ)〉L2(G),

where ψ(x,γ)(y) = ψ(x−1y) γ(y), and let

K
(x′,γ′)
ψ (x, γ) = Kψ(x, γ, x

′, γ′).

For all (x′, γ′) ∈ G× ̂G, we have

K
(x′,γ′)
ψ (x, γ) =

1

‖ψ‖22

∫

G

ψ(x′,γ′)(y) ψ(x,γ)(y) dy

=
1

‖ψ‖22

∫

G

ψ(x′,γ′)(y) ψ(x−1y) γ(y−1) dy

= Gψ

(

1

‖ψ‖22
ψ(x′,γ′)

)

(x, γ)

= Gψg(x, γ),

where g =
1

‖ψ‖22
ψ(x′,γ′) ∈ L2(G). So K

(x′,γ′)
ψ = Gψg ∈ Gψ(L

2(G)).

For all (x′, γ′) ∈ G× ̂G and f ∈ L2(G), we have

〈Gψf,K
(x′,γ′)
ψ 〉

L2(G×Ĝ) =
1

‖ψ‖22

∫

G×Ĝ

Gψf(x, γ) 〈ψ(x′,γ′), ψ(x,γ)〉L2(G) dy

=
1

‖ψ‖22

∫

G×Ĝ

Gψf(x, γ) Gψ(ψ(x′,γ′))(x, γ) dy

= 〈f, ψ(x′,γ′)〉L2(G) = Gψf(x
′, γ′).

Thus, Gψ(L
2(G)) is a r.k.H.s. with reproducing kernel Kψ satisfying

|Kψ(x, γ, x
′, γ′)| =

1

‖ψ‖22
|〈ψ(x′,γ′), ψ(x,γ)〉L2(G)|
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≤
1

‖ψ‖22
‖ψ(x′,γ′)‖ ‖ψ(x,γ)‖ =

1

‖ψ‖22
‖ψ‖2 ‖ψ‖2 = 1.

Hence, the reproducing kernel is pointwise bounded by 1. �

We will be using the Lemma 3.1 of [11] and for convenience of the reader, we
state it as follows:

Lemma 3.5. Let (Y,ΣY , µY ) be a σ-finite measure space, M a subset of Y

with µY (M) < ∞, and H ⊆ L2(Y, dµY ) a r.k.H.s. with kernel K. Assuming

that

sup
y′,y∈Y

|K(y′, y)| <∞,

and defining

HM := {F ∈ H : F = χM · F},

the following estimate holds:

dimHM ≤

(

sup
y′,y∈Y

|K(y′, y)|

)2

µY (M)2 <∞.

Theorem 3.6. Let G be a second countable, locally compact, abelian group. If

f ∈ L2(G) and ψ is a window function, then QUP for Gabor transform holds

if and only if the identity component G0 of G is non-compact.

Proof. Suppose that G has non-compact identity component G0.
Let f ∈ L2(G) \ {0} be arbitrary. In order to show that the measure of the

set {(x, γ) : Gψf(x, γ) 6= 0} is infinite, it suffices to show that for arbitrary set

M ⊆ G× ̂G of finite measure, we have

Gψ(L
2(G)) ∩ {F ∈ L2(G× ̂G) : F = χM · F} = {0}.(3.1)

Let us assume, on the contrary, that there exists a non-trivial function F0 such

that for arbitrary set M ⊆ G× ̂G of finite measure, we have

F0 ∈ Gψ(L
2(G)) ∩ {F ∈ L2(G× ̂G) : F = χM · F}.

Let ǫ > 0 be arbitrary and M0 = {(x, γ) : F0(x, γ) 6= 0} ⊆ M . Since (m ×

µ)(M0) > 0, by [7, Proposition 1] there exists a(1) ∈ (G× ̂G)0 such that

(m× µ)(M) < (m× µ)(M ∪ a(1)M0) < (m× µ)(M) +
ǫ

2
,

where (G× ̂G)0 = G0 × ( ̂G)0 denotes the identity component of G× ̂G. Then,
we can write

a(1) = (y(1), σ(1)), where y(1) ∈ G0, σ
(1) ∈ ( ̂G)0

and

a(1)M0 = {(y(1)x, σ(1)γ) : (x, γ) ∈M0}.
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Define

M1 :=M, M2 :=M ∪ a(1)M0.

Since 0 < (m × µ)(M2) < ∞ and a(1)M0 ⊆ M2 with (m × µ)(a(1)M0) > 0,

there exists a(2) = (y(2), σ(2)) ∈ G0 × ( ̂G)0 such that

(m× µ)(M2) < (m× µ)(M2 ∪ a
(2)a(1)M0) < (m× µ)(M2) +

ǫ

22
.

Proceeding in this way, we get an increasing sequence {Mk}k≥2 given by

Mk :=Mk−1 ∪ a
(k−1) · · · a(2)a(1)M0,

where a(j) = (y(j), σ(j)) ∈ G0 × ( ̂G)0 for all j = 1, 2, . . . , k − 1 satisfying

(m× µ)(Mk−1) < (m× µ)(Mk) < (m× µ)(Mk−1) +
ǫ

2k−1
.(3.2)

Let us now define

S =

∞
⋃

k=1

Mk.

Then, we have

(m× µ)(S) = lim
k→∞

(m× µ)(Mk)

≤ lim
k→∞

[

(m× µ)(Mk−1) +
ǫ

2k−1

]

≤ lim
k→∞

[

(m× µ)(M) +
ǫ

2
+ · · ·+

ǫ

2k−1

]

= (m× µ)(M) + lim
k→∞

[

k−1
∑

i=1

ǫ

2i

]

= (m× µ)(M) + ǫ <∞.

Consider the family {Fk}k∈N of functions on G× ̂G defined as follows:

F1(x, γ) : = F0(x, γ),

Fk(x, γ) : = γ((y(k−1))−1)Fk−1((y
(k−1))−1x, (σ(k−1))−1γ) for k > 2.

We first show that Fk ∈ Gψ(L
2(G)) for all k ∈ N. This is proved by induction

on k. For k = 1, the result is trivially true.
Assume that Fk−1 = Gψ(gk−1) for some gk−1 ∈ L2(G).
Then, using Lemma 3.1, we can write

Fk(x, γ) = γ((y(k−1))−1) Gψ(gk−1)((y
(k−1))−1x, (σ(k−1))−1γ)

= γ((y(k−1))−1) Gψ(σ
(k−1)gk−1)((y

(k−1))−1x, γ)

= Gψ((y(k−1))−1(σ(k−1)gk−1))(x, γ)

= Gψ(gk)(x, γ),
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where gk = (y(k−1))−1(σ(k−1)gk−1) ∈ L2(G) as gk−1 ∈ L2(G). Also,

{(x, γ) : Fk(x, γ) 6= 0} = {(x, γ) : Fk−1((a
(k−1))−1(x, γ)) 6= 0}

= {a(k−1)(y, σ) : Fk−1(y, σ) 6= 0}

= a(k−1) · · ·a(2)a(1){(x, γ) : F0(x, γ) 6= 0}

= a(k−1) · · ·a(2)a(1)M0 ⊆Mk ⊂ S.

Next we claim that the family {Fk}k≥2 is linearly independent. Assume that

there exists k > 2 such that Fk =
∑k−1
j=2 bjFj , where b2, b3, . . . , bk−1 ∈ C are

suitably chosen constants. Then

a(k−1) · · · a(2)a(1)M0 = {(x, γ) : Fk(x, γ) 6= 0}

⊆

k−1
⋃

j=2

{(x, γ) : Fj(x, γ) 6= 0}

= (a(1)M0) ∪ (a(2)a(1)M0) ∪ · · · ∪ (a(k−1) · · ·a(2)a(1)M0)

⊆Mk−1,

which implies that Mk =Mk−1, which contradicts (3.2).
Therefore, {Fk}k≥2 is an infinite set of linearly independent functions with

{(x, γ) : Fk(x, γ) 6= 0} ⊆ S, where (m× µ)(S) <∞.
By Lemma 3.4, Gψ(L

2(G)) is a r.k.H.s. with pointwise bounded kernel, so
by Lemma 3.5, each subspace of Gψ(L

2(G)) consisting of functions that are
non-zero on a set of finite measure must be of finite dimension. This is a
contradiction.

So Gψ(L
2(G)) ∩ {F ∈ L2(G × ̂G) : F = χM · F} = {0} for arbitrary set

M ⊆ G× ̂G of finite measure.
Hence, the set {(x, γ) : Gψf(x, γ) 6= 0} has infinite measure.
Conversely, suppose that for an arbitrary function f ∈ L2(G) \ {0}, the set

{(x, γ) : Gψf(x, γ) 6= 0} has infinite measure.
Let, if possible, G0 is compact. Then, by [6, Theorems 7.3 and 7.7], the

quotient group G/G0 is totally disconnected and therefore has a compact open
subgroup K.

Let π : G→ G/G0 be the natural homomorphism. Then π is continuous and
open and there exists a compact open subset C of G such that π(C) = K. So
G1 = π−1(K) = CG0 is a compact open subgroup of G. Let m(G1) = α > 0.
Then mG1

= α−1(m|G1
) is a Haar measure on G1 for which mG1

(G1) = 1.
Define f = χG1

and ψ = χG1
. Then

‖f‖22 = ‖ψ‖22 =

∫

G

|χG1
(x)|2 dm(x) = m(G1) = α.

Also, using [6, Lemma 23.19], we have

Gψf(x, γ) =

∫

G

χG1
(y) χG1

(x−1y) γ(y−1) dm(y)
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=

∫

G1

χG1
(x−1y) γ(y−1) α dmG1

(y)

= χG1
(x)

∫

G1

γ(y−1) α dmG1
(y)

= αχG1
(x) χA(G1)(γ).

Therefore, {(x, γ) : Gψf(x, γ) 6= 0} = G1 × A(G1).
Since G1 is compact and m(G1) > 0, so G1 is not locally null.

By [6, 23.24 (d), (e)], A(G1) = {γ ∈ ̂G : γ(g) = 1 for all g ∈ G1} is a
compact open subgroup. So,

0 < (m× µ)({(x, γ) : Gψf(x, γ) 6= 0}) = (m× µ)(G1 ×A(G1))

= m(G1) µ(A(G1)) <∞,

which is a contradiction to the hypothesis.
Hence, G0 is non-compact. �

4. QUP for certain group extensions

Throughout this section G will be a second countable, unimodular, locally

compact group of type I and ̂G the dual space of G. If f is a function on G
and y ∈ G, we denote by fy|H the function on H defined by

(fy|H)(h) = f(hy) for all h ∈ H.

We now prove the following theorem.

Theorem 4.1. Let H be a closed, normal subgroup of G such that G/H is

compact. If H has QUP for Gabor transform, then so does G.

Proof. Let f ∈ L2(G) and ψ be a window function such that

(m× µ){(x, π) : Gψf(x, π) 6= 0} <∞.

By Weil’s formula, we obtain
∫

G/H

∫

H

∫

Ĝ

χ{(hx,π):Gψf(hx,π) 6=0}(hx, π) dπ dh dẋ <∞.

Therefore, there exists a zero set K in G such that for all x ∈ G \K,
∫

H

∫

Ĝ

χ{(hx,π):Gψf(hx,π) 6=0}(hx, π) dπ dh <∞.(4.1)

Fix x ∈ G \K. For each h ∈ H , define

f
(xψ)
h (y) = f(y) xψ(h−1y) for all y ∈ G.

Then, f
(xψ)
h ∈ L1(G) for all h ∈ H .

Also, for all y ∈ G, we observe that f
(xψ)
h = f

ψ
hx.
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Since H is a closed unimodular subgroup of G, so by [8, Theorem 1.2] there
exists a zero setMh inG such that for every y ∈ G\Mh and every representation

σ of H , the function
(

f
(xψ)
h

)

y
|H ∈ L1(H) and

µ
Ĥ

({

σ :

(

(

f
(xψ)
h

)

y
|H

)

(̂σ) 6= 0

})

≤µ
({

π :
(

f
(xψ)
h

)

(̂π) 6= 0
})

.(4.2)

For all k ∈ H , we observe that

(

(

f
(xψ)
h

)

y
|H

)

(k) = (fy|H)
((xψ)y|H)
h (k). We

have,

µ
Ĥ

({

σ :

(

(

f
(xψ)
h

)

y
|H

)

(̂σ) 6= 0

})

=µ
Ĥ

({

σ :
(

(fy|H)
((xψ)y|H)
h

)

(̂σ) 6= 0
})

=

∫

Ĥ

χ{σ:G((xψ)y|H)(fy|H)(h,σ) 6=0}(σ) dσ(4.3)

and

µ
({

π :
(

f
(xψ)
h

)

(̂π) 6= 0
})

= µ
({

π :
(

f
ψ
hx

)

(̂π) 6= 0
})

=

∫

Ĝ

χ{π:Gψf(hx,π) 6=0}(π) dπ.(4.4)

From (4.2), (4.3) and (4.4), we obtain
∫

Ĥ

χ{σ:G((xψ)y |H)(fy|H)(h,σ) 6=0}(σ) dσ ≤

∫

Ĝ

χ{π:Gψf(hx,π) 6=0}(π) dπ

for all h ∈ H and y ∈ G \Mh. Integrating both sides with respect to h, we get
∫

H

∫

Ĥ

χ{σ:G((xψ)y |H)(fy|H)(h,σ) 6=0}(σ) dσ dh ≤

∫

H

∫

Ĝ

χ{π:Gψf(hx,π) 6=0}(π) dπ dh

for all y ∈ G \M , where M =
⋃

h∈HMh. It implies
∫

H

∫

Ĥ

χ{(h,σ):G((xψ)y |H)(fy|H)(h,σ) 6=0}(h, σ) dσ dh

≤

∫

H

∫

Ĝ

χ{(hx,π):Gψf(hx,π) 6=0}(hx, π) dπ dh

< ∞. (Using (4.1))

Therefore, we have

(mH × µH)
({

(h, σ) : G((xψ)y|H) (fy|H) (h, σ) 6= 0
})

<∞

for all y ∈ G\M . Since H has QUP for Gabor transform, we see that fy|H = 0
a.e. for all y ∈ G \M . Hence, by Weil’s formula, f = 0 a.e. �

Remark 4.2. Let G contain an abelian, normal subgroup H such that G/H is
compact and H0 is non-compact, then G satisfies QUP for Gabor transform.
In particular, QUP for Gabor transform holds for Lie groups which are Moore
group with non-compact identity component.
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Remark 4.3. By Theorem 4.1, QUP for Gabor transform holds for Euclidean
motion group SO(n) ⋉ Rn. In fact, it holds for all the groups of the form
K ⋉Rn, where K is compact group.

Remark 4.4. It can be seen easily that QUP for Gabor transform does not
hold when G is compact or discrete, by taking f = ψ = χG or f = ψ = χ{e}

respectively.

5. Weak QUP for Gabor transform

Throughout this section, we shall assume that G is a compact group. We
shall normalize the Haar measurem on G so that m(G) = 1. We shall establish
the necessary and sufficient condition for a weaker form of QUP for Gabor
transform. Next, we state a useful lemma that has been proved in [9].

Lemma 5.1. Let G be a compact group, let H be a closed normal subgroup of

G and let ϕ : G → G/H denote the quotient map. Further, let f ∈ L1(G) be

such that there exists some function g ∈ L1(G/H) with f(x) = g(ϕ(x)). Then,

for γ ∈ ̂G and ξ, η ∈ Hπ, we have

〈 ̂f(γ)ξ, η〉 = χ
A(H,Ĝ)(γ) 〈ĝ(γ)ξ, η〉.

We now prove the following main result of this section:

Theorem 5.2. Consider the following statements:

(i) If f ∈ L2(G) and ψ is a window function satisfying

(m× µ)({(x, γ) : Gψf(x, γ) 6= 0}) < 1,

then f = 0 a.e.

(ii) G/G0 is abelian.

Then (i)⇒(ii) and if ψ is constant on cosets of G0, then (ii)⇒(i).

Proof. (i)⇒(ii): Suppose on the contrary that G/G0 is non-abelian.
Since G/G0 is totally disconnected, there exists an open normal subgroup

C of G/G0 such that (G/G0)/C is non-abelian.
Let H be the pre-image of C in G. Then G/H is finite and non-abelian.
We define f = χH and ψ = χH . Then f, ψ ∈ L1(G) ∩ L2(G) and

Gψf(x, γ) =

∫

G

χH(y) χH(x−1y) γ(y−1) dm(y)

=

∫

H

χH(x−1y) γ(y−1) dm(y)

=







̂f(γ), if x ∈ H

0, if x /∈ H.
(5.1)

We define a function g ∈ L1(G/H) as g = χ{H}.
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Then f(x) = g(xH) for all x ∈ G. By Lemma 5.1, for γ ∈ ̂G and ξ, η ∈ Hγ ,
we have

〈 ̂f(γ)ξ, η〉 = χ
A(H,Ĝ)(γ) 〈ĝ(γ)ξ, η〉,(5.2)

where A(H, ̂G) = {π ∈ ̂G : π(h) = 1Hπ
for all h ∈ H}.

From (5.1) and (5.2), we obtain

〈Gψf(x, γ)ξ, η〉=







χ
A(H,Ĝ)(γ) 〈ĝ(γ)ξ, η〉, if x ∈ H

0, if x /∈ H

=







∑

yH∈G/H

χ{H}(yH) 〈γ(y−1)ξ, η〉, if x ∈ H, γ ∈ A(H, ̂G)

0, otherwise

=







〈1Hγ
ξ, η〉, if x ∈ H, γ ∈ A(H, ̂G)

0, otherwise,

which implies

(m× µ)({(x, γ) : Gψf(x, γ) 6= 0})

= (m× µ)({(x, γ) : x ∈ H, γ ∈ A(H, ̂G)})

= m(H) µ(A(H, ̂G)).(5.3)

Since m(G) = 1, we have

m(H) = [G : H ]−1.(5.4)

Also G/H is non-abelian, there exists at least one γ ∈ Ĝ/H such that dγ > 1.
Since H is a closed normal subgroup of G, by using [6, Corollary 28.10] we can

identify A(H, ̂G) with Ĝ/H .
As G/H is a finite group, by definition of Plancherel measure and [3, Propo-

sition 5.27], we have

µ(A(H, ̂G)) = µ(Ĝ/H) =
∑

γ∈Ĝ/H

dγ <
∑

γ∈Ĝ/H

d2γ = [G : H ].(5.5)

Combining (5.3), (5.4) and (5.5), we obtain

(m× µ)({(x, γ) : Gψf(x, γ) 6= 0}) < 1,

which is a contradiction to (i). Hence G/G0 is abelian.
(ii)⇒(i): Suppose that G/G0 is abelian and ψ is constant on cosets of G0.

Let f ∈ L2(G) and ψ ∈ L2(G) \ {0} be such that

(m× µ)({(x, γ) : Gψf(x, γ) 6= 0}) < 1.(5.6)
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Assume that f 6= 0. We define f̃ and ψ̃ on G/G0 by

f̃(ẋ) = f̃(xG0) =

∫

G0

f(xk)dk

and
ψ̃(ẋ) = ψ(x).

For ẋ ∈ G/G0 and π̇ ∈ Ĝ/G0, one can show that Gφf(x, π) = Gψ̃ f̃(ẋ, π̇),

where π ∈ A(G0, ̂G) and for k ∈ G0, Gψf(xk, π) = Gψ̃ f̃(ẋ, π̇). Hence,

(m× µ)({(x, γ) : Gψf(x, γ) 6= 0})

≥ (mG/G0
× µG/G0

)({(ẋ, γ̇) : Gψ̃ f̃(ẋ, γ̇) 6= 0}).(5.7)

Since G/G0 is abelian, one can show that the R.H.S of (5.7) is greater than or
equal to 1, which contradicts (5.6). Thus f = 0 a.e. �
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