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NEW EXTREMAL BINARY SELF-DUAL CODES OF

LENGTHS 66 AND 68 FROM CODES OVER Rk,m

Abidin Kaya and Nesibe Tüfekçi

Abstract. In this work, four circulant and quadratic double circulant
(QDC) constructions are applied to the family of the rings Rk,m. Self-
dual binary codes are obtained as the Gray images of self-dual QDC codes
over Rk,m. Extremal binary self-dual codes of length 64 are obtained as
Gray images of λ-four circulant codes over R2,1 and R2,2. Extremal
binary self-dual codes of lengths 66 and 68 are constructed by applying
extension theorems to the F2 and R2,1 images of these codes. More
precisely, 10 new codes of length 66 and 39 new codes of length 68 are

discovered. The codes with these weight enumerators are constructed for
the first time in literature. The results are tabulated.

1. Introduction

An interesting family of linear codes are self-dual codes. Self-dual codes over
finite fields have been studied extensively. Some good binary codes such as
the extended binary Golay code and the extended quadratic residue codes of
parameters [48, 24, 12]2 and [104, 52, 20]2 are of this type. Such codes have also
attracted a lot of attention due to their connections to design theory.

Conway and Sloane gave an upper bound for the minimum distance of a
binary self-dual code in [4]. The bound was finalized in [16] as follows; the min-
imum distance d of a binary self-dual code of length n satisfies d ≤ 4 [n/24]+ 6
if n ≡ 22 (mod 24) and d ≤ 4 [n/24] + 4, otherwise. A self-dual code meeting
this bound is called extremal. The possible weight enumerators of extremal
self-dual binary codes of lengths up to 64 and 72 were determined in [4]. Since
then, constructing new extremal binary self-dual codes have been an attractive
research area. Different techniques such as circulant constructions, automor-
phism groups and extensions are used to obtain new extremal binary self-dual
codes. For some of the works done in this direction we refer the reader to
[5, 8, 14, 15, 19].
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Recently, some rings of characteristic 2 have been used effectively to con-
struct new extremal binary self-dual codes. Lifts were used in [12] and [13].
Extension theorems for self-dual codes were applied to codes over F4 + uF4 in
[12]. Karadeniz et al. used four circulant construction over F2 + uF2 in [9].

In this work, we give a generalization of four circulant construction and
combine the lifting and extending methods. The computational algebra system
MAGMA [2] is used for the results. The rest of the paper is organized as follows:
Section 2 consists of preliminaries about the family of rings Rk,m and codes
over these. In Section 3, we introduce quadratic double circulant codes over
Rk,m. Section 4 includes constructions for extremal singly-even binary self-dual
codes of length 64 as Gray images of four circulant self-dual codes over R2,1 and
R2,2. In Section 5, extremal binary self-dual codes of lengths 66 and 68 with
previously unknown weight enumerators are constructed as extensions and as
Gray image of extensions. More precisely, 10 new codes of length 66 and 39
new codes of length 68 are constructed.

2. Preliminaries

The ring Rk,m was introduced in [17] as a generalization of F2+uF2+vF2+
uvF2, which was studied in [21]. The ring is a commutative local Frobenius
ring of characteristic 2 that is defined as

Rk,m = F2[u, v]/
〈

uk, vm, uv − vu
〉

where k ≥ m ≥ 1.

Note that R2,2 = F2 + uF2 + vF2 + uvF2, for more details on the structure
of the ring we refer to [17].

A linear C of length n over Rk,m is an-Rk,m submodule of Rn
k,m. The dual

C⊥ of a linear code C is defined with respect to the Euclidean inner product as

C⊥ :=

{

(b1, b2, . . . , bn) ∈ Rn
k,m |

n
∑

i=1

aibi = 0, ∀(a1, a2, . . . , an) ∈ C

}

.

A code C is said to be self-orthogonal if C ⊆ C⊥, and self-dual if C = C⊥.
A binary self-dual code is called doubly-even if the weight of any codeword is
divisible by 4 and singly-even otherwise. By [18], the ring Rk,m is suitable to
study self-dual codes.

Definition 2.1 ([17]). Take an element ā = a0+a1u+a2u
2+ · · ·+ak−2u

k−2+
ak−1u

k−1 of (Rk,1)
n, where ai ∈ F

n
2 . Then define the Gray map φk1 from

(Rk,1)
n to (F2)

kn as follows: when k is even let

φk1(ā) = (a0 + a1 + · · ·+ ak−2 + ak−1, a1 + · · ·+ ak−2 + ak−1,

a1 + · · ·+ ak−2, . . . , ak
2
−1 + a k

2

+ ak
2
+1, a k

2
−1 + a k

2

, a k
2

)

and when k is odd let

φk1(ā) = (a0 + a1 + · · ·+ ak−2 + ak−1, a1 + · · ·+ ak−2 + ak−1,

a1 + · · ·+ ak−2, . . . , ak−3

2

+ a k−1

2

+ a k+1

2

, a k−1

2

+ a k+1

2

, a k−1

2

).
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In [17], the Gray map is extended to Rk,m by viewing Rk,m as a vector space
over Rk,1 basis

{

1, v, v2, . . . , vm−1
}

as follows;

φkm(c) = (φk1(

m−1
∑

i=0

cki), φk1(

m−1
∑

i=1

cki), φk1(

m−2
∑

i=1

cki), . . . ,

φk1(

m
2
+1

∑

i=m
2
−1

cki), φk1(

m
2

∑

i=m
2
−1

cki), φk1(

m
2

∑

i=m
2

cki)),

where c =
∑

0≤i≤m−1 ckiv
i cki ∈ Rk,1. The Lee weight wL of an element a of

Rk,m is defined to be the Hammimg weight of the Gray image. The Gray map
φkm preserves duality, for more details we refer the reader to [17].

Consider the projections

πv : Rk,m → Rk,1 defined by v 7→ 0,

πu : Rk,1 → F2 defined by u 7→ 0,

then µ = πu ◦ πv is a projection from Rk,m to F2. The projections preserve
orthogonality and projection of a free self-dual code is self-dual. The code D is
said to be a lift of C if its projection is C. The following theorem gives a bound
for the minimum distance of a lift;

Theorem 2.2 ([17]). Let C be a linear code over Rk,m of length n with mini-

mum Lee weight d and µ(C) be its projection to F2. If d′denotes the minimum

Hamming weight of µ(C), we have d ≤ 2md′.

3. Quadratic double circulant codes over Rk,m

Double circulant codes are a subfamily of quasi-cyclic codes. Double cir-
culant constructions are an effective method to form self-dual codes. On the
other hand, quadratic residue codes is another topic of interest. In 2002, Ga-
borit defined quadratic double circulant (QDC) codes as a generalization of
quadratic residue codes in [7]. In this section, we study QDC codes over Rk,m.

Let p be an odd prime and Qp (a, b, c) be the circulant matrix with first row
r based on quadratic residues modulo p defined as r [1] = a, r [i + 1] = b if i
is a quadratic residue and r [i+ 1] = c if i is a quadratic non-residue modulo
p. We state the special case of the main theorem from [7], where p is an odd
prime:

Theorem 3.1 ([7]). Let p be an odd prime and let Qp (a, b, c) be the circulant

matrix with a, b and c as the elements of the ring Rk,m. If p = 4k + 1, then

Qp (a, b, c)Qp (a, b, c)
T

= Qp

(

a2 + 2k
(

b2 + c2
)

, 2ab− b2 + k (b+ c)
2
, 2ac− c2 + k (b+ c)

2
)

.(3.1)

If p = 4k + 3, then

Qp (a, b, c)Qp (a, b, c)
T
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= Qp(a
2 + (2k + 1)

(

b2 + c2
)

, ab+ ac+ k
(

b2 + c2
)

+ (2k + 1) bc,(3.2)

ab+ ac+ k
(

b2 + c2
)

+ (2k + 1) bc).

Definition 3.2 ([7]). The code generated by Pp (a, b, c) = (Ip | Qp (a, b, c))
over Rk,m is called a quadratic double circulant code and is denoted by

QDCp (Rk,m) (a, b, c) .

Example 3.3. Consider the code QDCp (R2,2) (1 + v + uv, u, v) that is gener-
ated by













I5

1 + v + uv u v v u

u 1 + v + uv u v v

v u 1 + v + uv u v

v v u 1 + v + uv u

u v v u 1 + v + uv













.

Self-duality of the code is easily checked by Theorem 3.1. Moreover, each row
of the generator matrix has Lee weight 8, which means the binary image of
the code is doubly-even. It is an extremal self-dual [40, 20, 8] code with partial
weight distribution 1 + 285z8 + 21280z12 + · · · .

In the following, we define a special subfamily of units and non-units in
Rk,m:

Definition 3.4. An element r of Rk,m is called a basic non-unit if r2 = 0 and
a basic unit if r2 = 1.

It is easily observed that 1 + r is a basic unit if and only if r is a basic
non-unit.

In the following theorems families of self-dual QDC codes over Rk,m are
given.

Theorem 3.5. Let a be an element of Rk,m such that a3 = 0 and p be a prime

with p ≡ 3 (mod 8). Then the codes

QDCp (Rk,m)
(

a, 1, a+ a2
)

and QDCp (Rk,m)
(

a, 1 + a2, a+ a2
)

are self-dual.

Proof. Since p = 8k + 3, a3 = 0 and char (Rk,m) = 2, by the equation 3.2 we
have

Qp

(

a, 1, a+ a2
)

Qp

(

a, 1, a+ a2
)T

= Qp

(

a2 + 1+
(

a+ a2
)2

, a+ a
(

a+ a2
)

+
(

a+ a2
)

, a+ a
(

a+ a2
)

+
(

a+ a2
)

)

= Qp (1, 0, 0) = Ip,

which implies that QDCp (Rk,m)
(

a, 1, a+ a2
)

is self-dual. By analogous steps

QDCp (Rk,m)
(

a, 1 + a2, a+ a2
)

is also self-dual. �
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Table 1. Some examples of self-dual QDC codes over Rk,m

R p Construction a, (b) The binary image Comment

R2,1 5 III u, 0 [20, 10, 4] extremal
R2,2 5 III u, v [40, 20, 8] extremal singly-even
R2,2 5 III u+ uv, v [40, 20, 8] extremal doubly-even
R2,1 11 I, II u [44, 22, 8] extremal
R3,1 11 I u [66, 33, 12] extremal
R3,1 11 II u [66, 33, 12] extremal
R2,2 11 II uv [88, 44, 12] singly-even
R2,2 11 IV u, uv [88, 44, 12] doubly-even
R4,1 11 I u3 [88, 44, 12] singly-even
R3,1 19 I u [114, 57, 16] -
R3,2 11 II v + uv [132, 66, 12] -
R4,1 19 I u3 [152, 76, 16] singly-even

The constructions given in Theorem 3.5 are called as I and II, respectively.
The characterization of non-units given in Definition 3.4 can be used to

construct self-dual codes as follows:

Theorem 3.6. Let a and b be two basic non-units in Rk,m and p be a prime.

Then the code QDCp (Rk,m) (1 + a, a, b) is self-dual whenever p ≡ 1 (mod 4).
Moreover, QDCp (Rk,m) (a, 1 + b, a) is self-dual if ab = 0 and p ≡ 3 (mod 8).

Proof. Let p = 4k + 1 be a prime, a and b be basic non-units in Rk,m. Then
by Equation (3.1)

Qp (1 + a, a, b)Qp (1 + a, a, b)
T
=







Qp

(

(1 + a)
2
, a2, b2

)

if k is even

Qp

(

(1 + a)2 , b2, a2
)

if k is odd

= Qp (1, 0, 0) = Ip.

Hence, the code QDCp (Rk,m) (1 + a, a, b) is self-dual.
Let p = 8k+3, a and b be basic non-units in Rk,m with ab = 0. Then, since

char (Rk,m) = 2, by Equation (3.2) we have

Qp (a, 1 + b, a)Qp (a, 1 + b, a)
T

= Qp (1, a (1 + b) + (1 + b) a, a (1 + b) + (1 + b)a)

= Qp (1, 0, 0) = Ip.

Therefore, the code QDCp (Rk,m) (a, 1 + b, a) is self-dual. �

The constructions given in Theorem 3.6 are called as III and IV , respec-
tively. We list some good QDC codes over Rk,m in Table 1.
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4. Constructions for self-dual codes over Rk,m by

λ-circulant matrices

In this section, the four circulant construction is generalized to λ-circulant
matrices. Extremal singly-even binary self-dual codes of length 64 are con-
structed as Gray images of four circulant codes over F2 and R2,2. The codes
are going to be used in Section 5 to construct new binary self-dual codes of
lengths 66 and 68.

The possible weight enumerators of singly-even extremal self-dual codes of
length 64 are characterized in [4] as:

W64,1 = 1 + (1312 + 16β)y12 + (22016− 64β)y14 + · · · where 14 ≤ β ≤ 104,

W64,2 = 1 + (1312 + 16β)y12 + (23040− 64β)y14 + · · · where 0 ≤ β ≤ 277.

Recently, codes with β = 29, 39, 53 and 60 in W64,1 and codes with β = 51, 58
in W64,2 are constructed in [19] and a code with β = 80 in W64,2 is constructed
in [9]. Together with these the existence of such codes is now known for β =14,
18, 22, 25, 29, 32, 36, 39, 44, 46, 53, 60, 64 in W64,1 and for β = 0, 1, 2, 4, 5,
6, 8, 9, 10, 12, 13, 14, 16, 17, 18, 20, 21, 22, 23, 24, 25, 28, 29, 30, 32, 33, 36,
37, 38, 40, 41, 44, 48, 51, 52, 56, 58, 64, 72, 80, 88, 96, 104, 108, 112, 114, 118,
120, 184 in W64,2.

Definition 4.1. Let r = (r1, r2, . . . , rn) be an element of (Rk,m)n. The λ-cyclic
shift of r is defined as σλ (r) = (λrn, r1, r2, . . . , rm−1) where λ ∈ R. A square
matrix is called λ-circulant if every row is the λ-cyclic shift of the previous one.

The four circulant construction was defined in [1]. Since λ-circulant matrices
commute with each other the four circulant construction can be extended to
λ-circulant matrices. We have the following result:

Theorem 4.2. Let C be the linear code over Rk,m of length 4n generated by

the four circulant matrix

G :=

[

I2n
A B

BT AT

]

,

where A and B are λ-circulant n × n matrices over Rk,m satisfying AAT +
BBT = In. The code C and its binary image are self-dual.

The code C in Theorem 4.2 is called as a λ-four circulant code over Rk,m.
Four circulant codes of length 32 over R2,1 have been studied extensively in [9]
and the codes with weight enumerators β = 0, 16, 32, 48 and 80 in W64,2 were
obtained. The code with the weight enumerator β = 80 in W64,2 is the first
such code in literature. For further reference we name this code as C64,80 which
is the four circulant code over R2,1 with

rA = (u, 0, 0, 0, u, 1, u, 1+ u) and rB = (u, u, 0, 1, 1, 1+ u, 1 + u, 1 + u) .

By considering (1 + u)-four circulant codes of length 32 over R2,1 we were
able to obtain the binary codes with weight enumerators for β = 8k in W64,2
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Table 2. (1 + u)-four circulant codes over R2,1

Li rA rB β in W64,2 |Aut (Li)|

L1 (u333uuu0) (11311010) 8 25

L2 (u111000u) (11333u1u) 24 25

L3 (u131u0uu) (31313030) 72 25

L4 (33uu3110) (113u00u3) 0 25

L5 (330u3110) (1310uuu1) 16 25

L6 (33uu3130) (331u0u01) 32 25

L7 (11u03130) (131u0003) 48 25

L8 (310u113u) (1330uu03) 64 26

L9 (u1110u3u) (30u03113) 8 25

L10 (0133uu30) (10001113) 24 25

L11 (u111001u) (3u0u1311) 40 25

L12 (0133u01u) (10001311) 56 25

where 0 ≤ k ≤ 9. These are listed in Table 2. In order to construct extremal
binary self-dual codes of length 64 as Gray images of λ-four circulant codes of
length 16 over R2,2 we lift binary codes to codes over R2,1 and then lift these
to codes over R2,2. Theorem 2.2 tells us the minimum distance of the codes to
be lifted. We demonstrate this in the following example:

Example 4.3. Let C be the four circulant code of length 16 over F2 with
rA = (1, 0, 0, 0) and rB = (1, 1, 1, 1). Then C is a singly-even [16, 8, 4] code.
The code C is lifted to C′, which is the (1 + u)-four circulant code of length 16
over R2,1 with r′A = (1, 0, u, u) and r′B = (1, 1 + u, 1, 1 + u). The binary image
φ21(C

′) of C′ is a self-dual [32, 16, 6] code. Then C′ is lifted to the C′′ that is
the (1 + u+ v + uv)-four circulant code of length 16 over R2,2 with

r′′A = (1, 0, u, u+ v + uv) and r′′B = (1 + v + uv, 1 + u, 1 + v, 1 + u+ v) .

The binary code φ22(C
′′) is and extremal singly-even binary self-dual code of

length 64 with weight enumerator β = 0 in W64,2. Note that, πv (C
′′) = C′,

πu (C
′) = C and µ (C′′) = C.

In order to fit the upcoming tables we use hexadecimal number system.
The one-to-one correspondence between hexadecimals and binary 4 tuples is as
follows:

0 ↔ 0000, 1 ↔ 0001, 2 ↔ 0010, 3 ↔ 0011,

4 ↔ 0100, 5 ↔ 0101, 6 ↔ 0110, 7 ↔ 0111,

8 ↔ 1000, 9 ↔ 1001, A ↔ 1010, B ↔ 1011,

C ↔ 1100, D ↔ 1101, E ↔ 1110, F ↔ 1111.

To express elements of R2,2 we use the ordered basis {uv, v, u, 1}. For in-
stance 1+u+uv in R2,2 is expressed as 1011 which is B. By considering λ-four
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Table 3. Self-dual λ-four circulant codes over R2,2

Mi λ rA rB β in W64,2 |Aut (Mi)|

M1 3 (F, 0, E, 2) (7, 5, 3, D) 0 25

M2 3 (7, 0, C,A) (F, F, 9, 5) 16 25

M3 3 (3, 0, D, 4) (E, 3, F,B) 48 25

M4 7 (B, 0, 1, C) (9, B, 1, 2) 5 23

M5 7 (B, 0, 1, 4) (A, 7, 5, F ) 8 24

M6 7 (3, 0, 7, A) (B,C,D, 9) 9 23

M7 7 (7, 0, 5, C) (1, 3, 2, 5) 12 24

M8 7 (D, 0, F, C) (F, 1, 7, A) 13 23

M9 7 (B, 0, 1, C) (A, 5, 5, D) 16 25

M10 7 (B, 0, F, A) (B,C,D, 7) 17 23

M11 7 (7, 0, 5, C) (2, 7, 5, F ) 24 24

M12 F (1, 0, 2, E) (D, 3, 5, 7) 0 25

M13 F (C, 0, 3, 6) (1, B, 7, 1) 16 25

M14 F (F, 0, B,A) (F,B, 4, 5) 48 25

M15 B (9, 0, F, C) (B, 6, 9, 3) 5 23

M16 B (D, 0, 3, C) (6, B, 5, 3) 8 24

M17 B (5, 0, B, 4) (7, 6, D, 9) 9 23

M18 B (5, 0, 1, E) (9, 9, C,B) 12 24

M19 B (D, 0, 1, 6) (F, 1, 7, C) 13 23

M20 B (5, 0, B, C) (E,D, F, 5) 16 23

M21 B (B, 0, 5, C) (7, E,D, 7) 17 23

M22 B (D, 0, 3, 4) (E, 9, 3, 1) 24 24

circulant codes of length 16 over R2,2 we obtain self-dual binary codes with
weight enumerators in W64,2 for various values for β, these are listed in Table
3.

Remark 4.4. In order to construct the codes in Table 2 the binary four circulant
codes are lifted to R2,1. Similarly, to construct the codes in Table 3 the binary
four circulant codes are lifted to R2,1 and then to R2,2. This reduces the search
field remarkably from 232 = 4294967296 to 216 = 65536.

5. New binary self-dual codes by extensions

By applying the extension theorems to the self-dual codes constructed in
Section 4 we were able to obtain new binary self-dual codes of lengths 66 and
68. In particular we were able to construct 11 new codes of length 66 and
34 new codes of length 68. Extensions for self-dual codes were first used by
Brualdi and Pless in [3]. Since then different versions of extensions applied, for
some of these we refer to [6, 15] and [12]. The following extension theorems
hold for any commutative Frobenius ring R of characteristic 2.
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Theorem 5.1 ([6]). Let C be a self-dual code over R of length n and G = (ri)
be a k×n generator matrix for C, where ri is the i-th row of G, 1 ≤ i ≤ k. Let

c be a unit in R such that c2 = 1 and X be a vector in Rn with 〈X,X〉 = 1.
Let yi = 〈ri, X〉 for 1 ≤ i ≤ k. Then the following matrix











1 0 X

y1 cy1 r1
...

...
...

yk cyk rk











generates a self-dual code C′ over R of length n+ 2.

Amore specific extension method which can be applied to generator matrices
in standard form is as follows:

Corollary 5.2 ([12]). Let C be a self-dual code generated by G = (In|A) over

R. If the sum of the elements in i-th row of A is si, then the matrix

G∗ =











1 0 x1 · · · xn 1 · · · 1
y1 cy1
...

... In A

yn cyn











,

where yi = xi+si, c is a unit with c2 = 1, X = (x1, . . . , xn) and 〈X,X〉 = 1+n,

generates a self-dual code C∗ over R.

5.1. F2-extensions

The Gray images of the codes in Tables 2 and 3 are extremal singly-even self-
dual binary codes of length 64. In this section, we construct extremal binary
self-dual codes of length 66 by applying Theorem 5.1. Eleven new codes are
obtained.

We recall that a self-dual [66, 33, 12]2-code has a weight enumerator in one
of the following forms [5];

W66,1 = 1 + (858 + 8β) y12 + (18678− 24β) y14 + · · · , where 0 ≤ β ≤ 778,

W66,2 = 1 + 1690y12 + 7990y14 + · · · and

W66,3 = 1 + (858 + 8β) y12 + (18166− 24β) y14 + · · · , where 14 ≤ β ≤ 756.

Recently, new codes in W66,1 are constructed in [9, 20]. Together with these,
the existence of such codes is known for β = 0, 1, 2, 3, 5, 6, 8,. . . , 11, 14,. . . ,18,
20,. . . , 56, 59, 60, 62, . . . , 69, 71, . . . , 74, 76, 77, 78, 80, 83, 84, 86, 87, 88, 92,
94 in W66,1. For a list of known codes in W66,3 we refer to [13].

We construct the codes with weight enumerators β = 19, 61, 75, 79, 81, 82,
85, 89, 90 and 100 in W66,1. The extension in Theorem 5.1 is applied to the
binary images of the codes constructed in Section 4 to obtain the new codes.
The results are given in Table 4 where 132 denotes 32 successive 1s in X .
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Table 4. New extremal binary self-dual codes with weight
enumerators in W66,1 by Theorem 5.1 (10 codes)

Code The extension vector X β in W66,1

M17 10101010111001110010001101110010132 19

M3 11001100001011100111100101011111132 61
L8 10001011111111011011010110100100132 75

L8
00010101001111110101110111100101
01111001110010000111111001100000

79

L3
01100110100001001100000110100000
01001101100110110111110101111001

81

L8
01010110111110101100011010100111
00010101100101110100110101101001

82

L3
00111101100000000111010010101001
00100001110000111110001100010100

85

C64,80 10100100001110101110100111000001132 89

C64,80 00011111110111101111001110001011132 90
C64,80 11100001100000000001000010011011132 100

5.2. R2,1-extensions

In this section, we obtain new extremal binary self-dual codes of length 68
by considering R2,1-extensions of the codes constructed in the previous section.
The ring R2,2 can be considered as an extension of R2,1. Throughout this
section, ϕu is the Gray map from R2,2 to R2,1 defined as ϕu (a+ bv) = (b, a+ b)
where a, b ∈ R2,1. We consider the extensions of the codes in Table 2 as well
as the Gray images of the codes in Table 3 under ϕu. 39 new extremal binary
self-dual codes of length 68 are obtained as the binary images of the extensions.
In order to save space, the element 1+u of R2,1 is abbreviated as 3 in extension
vectors X .

The weight enumerator of an extremal binary self-dual code of length 68 is
characterized in [5] as follows:

W68,1 = 1 + (442 + 4β) y12 + (10864− 8β) y14 + · · · , 104 ≤ β ≤ 1358,

W68,2 = 1 + (442 + 4β) y12 + (14960− 8β − 256γ)y14 + · · · ,

where 0 ≤ γ ≤ 11 and 14γ ≤ β ≤ 1870 − 32γ. Recently, new codes with
previously unknown weight enumerators in W68,1 were constructed in [11, 20].
Together with these the existence of codes in W68,1 are known for β = 104,
115, 117, 120, 122, 123, 125, . . . , 168, 170, . . . , 232, 234, 235, 236, 241, 247,
255, 257,. . . ,269, 280, 291, 302, 313, 324, 328, . . . , 336, 338, 339, 345, 347, 355,
379 and 401.

We obtain a code with a weight enumerator β = 169 in W68,1.
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Table 5. New codes in W68,2 by Corollary 5.2 on R2,1 (14 codes)

Li X c γ β

L4 (1313uu0133130u11) 1 + u 2 60
L4 (1131uu011133u011) 1 2 62
L4 (0001u11uu3110300) 1 2 64
L4 (00u1u130u111u1u0) 1 + u 2 66
L4 (uuu30330013101uu) 1 + u 2 70
L4 (u0u1u13uu333u3u0) 1 + u 2 72
L3 (u3000uu33u31u031) 1 2 166
L3 (u1u0u0u11u31uu13) 1 + u 2 170
L3 (03u0u00330310u31) 1 + u 2 172
L3 (u1uuu0u11u31u013) 1 + u 2 174
L3 (01000u0110310013) 1 + u 2 176
L3 (011300u031111313) 1 3 156
L3 (3u131011301u0u10) 1 + u 3 172
L3 (103130333010u010) 1 + u 3 180

Recently, new codes in W68,2 are obtained in [12, 13, 11, 20] together with
these, codes exist for W68,2 when

γ = 0, β = 11, 22, 33, 44, . . . , 154, 165, 187, 209, 231 or

β ∈ {2m |m = 17, 20, 88, 99, 102, 110, 119, 136, 154, 165 or 78 ≤ m ≤ 86} ;

γ = 1, β = 49, 57, 59, . . . , 160 or

β ∈ {2m |m = 27, 28, 29, 95, 96 or 81 ≤ m ≤ 89} ;

γ = 2, β=65, 68, 69, 71, 77, 81, 159 or β∈{2m | 37 ≤ m ≤ 68, 70 ≤ m ≤ 81} or

β ∈ {2m+ 1 | 42 ≤ m ≤ 69, 71 ≤ m ≤ 77} ;

γ = 3, β = 101, 117, 123, 127, 133, 137, 141, 145, 147, 149, 153, 159, 193 or

β ∈ {2m |m = 44, 45, 48, 50, 51, 52, 54, . . . , 58, 61, 63,. . . , 66, 68, . . . ,

72, 74, 77, . . . , 81, 88, 94, 98} ;

γ = 4, β ∈ {2m |m = 51, 55, 58, 60, 61, 62, 64, 65, 67, . . . , 71, 75, . . . ,

78, 80} and

γ = 6 with β ∈ {2m |m = 69, 77, 78, 79, 81, 88} .

In this section, we construct the codes with weight enumerators in W68,2 for
γ = 0 and β = 178; γ = 1 and β = 180; γ = 2 and β = 60, 62, 64, 66, 70, 72, 164,
166, 168, 170, 172, 174, 176, 178, 180, 182, 186; γ = 3 and β = 94, 107, 118, 120,
156, 168, 172, 180; γ = 4 and β = 98, 104, 108, 112, 174, 194.

By considering R2,1-extensions of codes in Table 2 with respect to Corollary
5.2 we were able to obtain 14 new extremal binary self-dual codes, which are
listed in Table 5.
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Table 6. New codes in W68,2 by Theorem 5.1 on R2,1 (24 codes)

Code X c γ β

L3 (31u1u11133u10u113u10u33013010111) 1 + u 0 178
L3 (10u1u033uu3u00u03101010uu10u3u0u) 1 1 180
L12 (11330u11u1103101u3u3101u31uu33u) 1 2 164
L8 (0uuu0011113u13u01303113033311003) 1 2 168
L8 (00000031313033u031u3333u33311003) 1 + u 2 178
L8 (u0uuu033111033uu1301113u13331uu1) 1 2 180
L8 (u0u00011313u31u011u1113u33313u01) 1 2 182
L3 (u3uuu33uu10uu00103010u001u030u13) 1 + u 2 186
ϕu (M12) (13331031u0u1133u1111111111111111) 1 3 94
ϕu (M4) (11u301u33u0133u3u1u3u0uu010330uu) 1 3 107
ϕu (M12) (11333u3100u1133u1331133313313133) 1 + u 3 118
ϕu (M17) (1310u30u330100001111111111111111) 1 + u 3 120
L3 (uuu310u11u3u00u1uuu303u3u3u13333) 1 3 164
L3 (uu031u03103u0u01u00103u3u1u13111) 1 + u 3 166
L3 (uuu11u031u3u0u01u003u3u303u31131) 1 + u 3 168
L3 (u0031003301uuuu3u001u103u3u31331) 1 + u 3 174
ϕu (M12) (000101330011uu330u000u1u0011uu33) 1 + u 4 86
ϕu (M12) (uu01u1110u33u033uu0u003u0u31u013) 1 + u 4 96
ϕu (M12) (0001u3130u31uu1100uuuu1uu0130u31) 1 + u 4 98
ϕu (M12) (u3u3u1110u3310u31111111111111111) 1 4 104
ϕu (M12) (u3010333003110031331133333113313) 1 4 108
ϕu (M12) (u1u10313001110u33313331111331111) 1 4 112
L8 (00u00u33111u130011u31130111310u3) 1 + u 4 174
L8 (u300033003u0uuu10303000u1uu10u31) 1 4 194

Example 5.3. Let C be the code obtained by applying Theorem 5.1 for
ϕu (M4) over R2,1 with

X = (u, 1 + u, 0, 0, 0, 1+ u, 0, 0, 1, u, 0, 1, u, u, 1+ u, 0, 1111111111111111)

and c = 1 + u then the binary image of the extension is an extremal binary
self-dual code of length 68 with a weight enumerator β = 169 in W68,1. The
code C is the first extremal binary self-dual code with this weight enumerator.

Theorem 5.1 is applied to codes in Table 2 and R2,1-images of codes in
Table 3. 24 new extremal binary self-dual codes of length 68 are obtained as
Gray images of the extensions. Similar to Section 4 lifts can be applied to the
extensions. If X is a possible extension vector for a free self-dual code C over
R2,1, then πu (X) is an extension vector for πu (C). In order to extend C we
may lift an extension vector for πu (C). Theorem 2.2 gives an idea on which
extension vectors to lift. For instance, a possible extension vector for the binary
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code πu (ϕu (M12)) is (00010111001100110000001000110011). By considering
the lifts of this vector we were able to obtain new codes with weight enumerators
corresponding to rare parameters γ = 4 and β = 86, 96 and 98. Those are listed
in Table 6. Considering lifts reduces the workload remarkably from 432 to 232.

Remark 5.4. The binary generator matrices of the new extremal binary self-
dual codes of lengths 66 and 68 that are constructed in Tables 4, 5 and 6 are
available online at [10].
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