
East Asian Math. J.

Vol. 33 (2017), No. 1, pp. 037–044

http://dx.doi.org/10.7858/eamj.2017.004

BERGMAN KERNEL ESTIMATES FOR GENERALIZED

FOCK SPACES

Hong Rae Cho† and Soohyun Park

Abstract. We will prove size estimates of the Bergman kernel for the

generalized Fock space F2
ϕ, where ϕ belongs to the class W. The main

tool for the proof is to use the estimate on the canonical solution to the
∂̄-equation. We use Delin’s weighted L2-estimate ([3], [6]) for it.

1. Introduction

Let C be the complex plane and dA(z) be the area measure on C. H(C)
denotes the space of all entire functions in C. Let ϕ ∈ C2(C) be a radial
function (i.e., ϕ(z) = ϕ(|z|), ∀z ∈ C) such that ∆ϕ(z) > 0, where ∆ is the
Laplace operator. We consider certain generalized Fock spaces

Fpϕ =

{
f ∈ H(C) : ‖f‖pp,ϕ =

∫
C

∣∣f(z)e−ϕ(z)
∣∣p dA(z) <∞

}
, 1 ≤ p <∞,

and

F∞ϕ =

{
f ∈ H(C) : ‖f‖∞,ϕ = sup

z∈C
|f(z)|e−ϕ(z)

}
.

The space Fpϕ is the closed subspace of Lpϕ := Lp(C, e−pϕdA) consisting of

entire functions. Since the space F2
ϕ is a reproducing kernel Hilbert space, for

each z ∈ C, there is a function Kz ∈ F2
ϕ with f(z) = 〈f,Kz〉, where 〈·, ·〉 is the

usual inner product in L2
ϕ. The orthogonal projection from L2

ϕ to F2
ϕ is given

by

Pϕf(z) =

∫
C
f(w)K(z, w)e−2ϕ dA(w),

where K(z, w) = Kz(w).

Definition 1. A positive function τ on C is said to belong to the class L if it
satisfies the following two properties:
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(a) τ is bounded on C;
(b) There is a constant C1 such that

|τ(z)− τ(w)| ≤ C1|z − w|,(1)

for any z, w ∈ C.

The following notation is frequently used:

mτ =
1

4
min

{
1,

1

C1

}
,

where C1 is the constant in (1).
Given z ∈ C and r > 0, we write D(z, r) = {w ∈ C : |w − z| < r} for the

Euclidean disc centered at z with radius r. Throughout this paper, we use the
notation Dρ(z) := D(z, ρτ(z)).

Definition 2. We say that a weight function ϕ ∈ C2(C) is in the class W if it
satisfies the following properties:

(a) ϕ is radial;
(b) ∆ϕ > 0;

(c) (∆ϕ(z))−
1
2 ∼ τ(z), |z| ≥ 1, with τ(z) being a function in the class L.

The class W includes the power functions ϕ(r) = rα with α ≥ 2 and expo-
nential type functions such as ϕ(r) = eβr, β > 0 or ϕ(r) = ee

r

[4]. Since the
classical Fock space is induced by ϕ(r) = r2, the classical Fock space is covered
by the generalized Fock spaces.

For z, w ∈ C, the distance dϕ induced by the metric τ(z)−2dz ⊗ dz̄ is given
by

dϕ(z, w) = inf
γ

∫ 1

0

|γ′(t)|
τ(γ(t))

dt,

where γ : [0, 1]→ C is a parametrization of a piecewise C1 curve with γ(0) = z
and γ(1) = w.

We will prove size estimates of the Bergman kernel for the generalized Fock
space F2

ϕ, where ϕ belongs to the class W. The following is our main theorem.

Theorem 1.1. Let ϕ ∈ W, then there exist positive constants C and σ such
that

|K(z, w)| ≤ C e
ϕ(z)+ϕ(w)

τ(z)τ(w)
exp (−σdϕ(z, w)) ,(2)

for z, w ∈ C.

The Bergman kernel size estimates have been already studied on various
Bergman type spaces with exponential type weights ([1], [2], [7]). For the gener-
alized Fock spaces, J. Marzo and J. Ortega-Cerdà [9] obtained similar estimates
under the hypothesis that ϕ is a subharmonic function whose Laplacian ∆ϕ
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is a doubling measure (see [8], [9]). In our paper, we prove the size estimates
without the doubling condition.

For the Bergman spaces with certain exponential type weights, S. Asserda
and A. Hichame [2] proved that the estimate (2) holds. We follow a similar
argument as [2] and [9]. In fact, the main tool for the proof is to use the
estimate on the canonical solution to the ∂̄-equation. We use Delin’s weighted
L2-estimate ([3], [6]) for it.

The expression f . g means that there is a constant C independent of the
relevant variables such that f ≤ Cg, and f ∼ g means that both f . g and
g . f hold.

2. Preliminaries

There are two lemmas which follow previous definition. These lemmas will
be used many times.

Lemma 2.1. Let τ ∈ L, 0 < α ≤ mτ , and w ∈ C. Then

3

4
τ(w) ≤ τ(z) ≤ 5

4
τ(w),

for any z ∈ Dα(w).

Proof. Fix w ∈ C. As τ is Lipschitz, τ satisfies (1). For 0 < α ≤ mτ , z ∈ Dα(w)
implies |z − w| ≤ ατ(w) ≤ 1

4C1
τ(w). Hence

|τ(z)− τ(w)| ≤ C1|z − w| ≤
1

4
τ(w).

It is equivalent to

−1

4
τ(w) ≤ τ(z)− τ(w) ≤ 1

4
τ(w).

By adding τ(w), we get the result. �

Corollary 2.2. Let τ ∈ L, 0 < α, β ≤ mτ , and z, w ∈ C. Suppose that
Dα(z) ∩Dβ(w) 6= ∅. Then

(a) τ(z) ∼ τ(w).
(b) dϕ(z, w) . 1.

Proof. (a) is immediate from Lemma 2.1. In case (b) take γ(t) = (1 − t)z +
tw, t ∈ [0, 1]. Then γ is a parametrization of a curve from z to w. By definition
of dϕ and previous (a), we obtain

dϕ(z, w) ≤
∫ 1

0

|γ′(t)|
τ(γ(t))

dt ∼
∫ 1

0

|z − w|
τ(z)

dt =
|z − w|
τ(z)

.(3)

But |z − w| < ατ(z) + ατ(w) ∼ τ(z). Hence we get the result. �

Lemma 2.3. Let τ ∈ L and z ∈ C. We define a function hz(ζ) = dϕ(ζ, z).
Then hz is locally Lipschitz.
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Proof. Let α ∈ (0,mτ ] be a constant. Let ζ0 ∈ C, then for any point ζ ∈ Dα(ζ0),
we obtain the followings from (3):

|hz(ζ)− hz(ζ0)| = |dϕ(ζ, z)− dϕ(ζ0, z)|
≤ dϕ(ζ, ζ0)

≤ C |ζ − ζ0|
τ(ζ0)

= δ|ζ − ζ0|,

where δ = C/τ(ζ0). �

Next lemma is obtained in [10]. This sub-mean-value property will be used
often.

Lemma 2.4 ([4], [10]). Suppose that ϕ is a subharmonic function and τ is
Lipschitz such that τ(z)2∆ϕ(z) ≤M for some constant M > 0. Let 0 < p <∞
and s ∈ R. Then for small α ∈ (0,mτ ], there exists constant C > 0 depending
on α such that

|f(a)|pe−sϕ(a) ≤ C 1

τ(a)2

∫
Dα(a)

|f |pe−sϕ dA,

for any f ∈ H(C) and a ∈ C.

In [6], Delin gave the improved L2-estimates for the canonical solution of
∂̄u = f in L2

ϕ. It is essential for the proof of main theorem.

Lemma 2.5 ([3], [6]). Suppose that ∆φ > 0 on Ω ⊆ C. Let ω ∈ C∞(Ω) be

a weighted function on Ω satisfying τ(z)|∂ω| ≤ µω, where 0 < µ <
√

2. Let

τ = (∆φ)−
1
2 and u be the canonical solution of ∂̄u = f in L2

ϕ. Then∫
Ω

|u|2e−φω dA ≤ 2

(
√

2− µ)2

∫
Ω

τ2|f |2e−φω dA.

3. Bergman kernel estimates

Before proving the main estimate, we show an estimate of the Bergman kernel
which is more rough than (2). It is caused by the sub-mean-value property easily.

Proposition 3.1. Let ϕ ∈ W. Then there is a constant C such that

|K(z, w)| ≤ C e
ϕ(z)+ϕ(w)

τ(z)τ(w)
,

where z, w ∈ C.
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Proof. For z ∈ C, Kz(w) is an entire function on C and ϕ is subharmonic. By
Lemma 2.4 for small α > 0, and basic argument, we get the followings:

|K(z, w)|2e−2ϕ(w) = |Kz(w)|2e−2ϕ(w)

.
1

τ(w)2

∫
Dα(w)

|Kz(ζ)|2e−2ϕ(ζ)dA(ζ)

=
1

τ(w)2

∫
Dα(w)

Kz(ζ)K(z, ζ)e−2ϕ(ζ)dA(ζ)

≤ 1

τ(w)2

∫
C
Kz(ζ)K(z, ζ)e−2ϕ(ζ)dA(ζ).

By reproducing property,∫
C
Kz(ζ)K(z, ζ)e−2ϕ(ζ)dA(ζ) = Kz(z).

Hence,

|K(z, w)|2 . e2ϕ(w)

τ(w)2
Kz(z).

By taking w = z, we obtain

K(z, z) .
e2ϕ(z)

τ(z)2
.

Therefore,

|K(z, w)| ≤
√
K(z, z)K(w,w) .

eϕ(z)+ϕ(w)

τ(z)τ(w)
.

�

Theorem 3.2. Let ϕ ∈ W, then there exist positive constants C and σ such
that

|K(z, w)| ≤ C e
ϕ(z)+ϕ(w)

τ(z)τ(w)
exp (−σdϕ(z, w)) ,

for z, w ∈ C.

Proof. Let β ∈ (0,mτ ] be a constant. First, we assume Dβ(z) ∩ Dβ(w) 6= ∅.
By Proposition 3.1, for every z, w ∈ C, we have

|K(z, w)| . eϕ(z)+ϕ(w)

τ(z)τ(w)
.

By Lemma 2.2, we have dϕ(z, w) . 1 and then 1 . exp (−σdϕ(z, w)) . Hence
we get the following estimate:

|K(z, w)| . eϕ(z)+ϕ(w)

τ(z)τ(w)
exp (−σdϕ(z, w)) ,

where Dβ(z) ∩Dβ(w) 6= ∅.
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Next, we assume Dβ(z) ∩ Dβ(w) = ∅. We choose a cut-off function χ ∈
C∞0 (C) such that suppχ ⊂ Dβ(w), 0 < χ < 1, χ = 1 on Dβ/2(w) and |∂χ|2 .
χ

τ(w)2 . By Lemma 2.4, we obtain

|K(z, w)|2e−2ϕ(w) .
1

τ(w)2

∫
D
β
2 (w)

|Kz(ζ)|2e−2ϕ(ζ) dA(ζ)

=
1

τ(w)2

∫
D
β
2 (w)

χ(ζ)|Kz(ζ)|2e−2ϕ(ζ) dA(ζ)

.
1

τ(w)2
‖Kz‖2L2(χe−2ϕdA).

The norm of Kz ∈ L2(χe−2ϕdA) is given by

‖Kz‖2L2(χe−2ϕdA) = sup
f

∣∣〈f,Kz〉L2(χe−2ϕdA)

∣∣ ,
where f is holomorphic on Dβ(w) with ‖f‖L2(χe−2ϕdA) = 1. Because fχ ∈
L2(e−2ϕdA), we have

〈f,Kz〉L2(χe−2ϕdA) = Pϕ(fχ)(z).

Let uf = fχ− Pϕ(fχ), Then uf is the canonical solution of

∂̄u = ∂̄(fχ) = f∂̄χ

in L2(e−2ϕdA). Since χ(z) = 0, we have |uf (z)| = |Pϕ(fχ)(z)|. Therefore,

|K(z, w)|2e−2ϕ(w) .
1

τ(w)2
sup
f
|uf (z)|2,(4)

where f is holomorphic on Dβ(w) with ‖f‖L2(χe−2ϕdA) = 1. Since uf is holo-

morphic in Dβ(z), we have the followings by Lemma 2.4:

|uf (z)|2e−2ϕ(z) .
1

τ(z)2

∫
Dβ(z)

|uf (ζ)|2e−2ϕ(ζ) dA(ζ)

.
1

τ(z)2

∫
Dβ(z)

e−ε
|ζ−z|
βτ(z) |uf (ζ)|2e−2ϕ(ζ) dA(ζ)

.
1

τ(z)2

∫
Dβ(z)

e−Cεdϕ(ζ,z)|uf (ζ)|2e−2ϕ(ζ) dA(ζ).

The function hz(ζ) = dϕ(ζ, z) is locally Lipschitz. By the approximation the-
orem of the locally Lipschitz function [5], we can obtain a smooth function gz
such that

|gz(ζ)− dϕ(ζ, z)| ≤ 1(5)

and

|dgz(ζ)| . 1

τ(ζ)
+ 1.(6)
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By using (5), we get the relation

e−Cεdϕ(ζ,z) ∼ e−Cεgz(ζ).

Thus, we have

|uf (z)|2e−2ϕ(z) .
1

τ(z)2

∫
C
e−Cεgz(ζ)|uf (ζ)|2e−2ϕ(ζ) dA(ζ).(7)

By using (6) and boundedness of τ , we have τ(ζ) |dgz(ζ)| ≤ K for some constant
K > 0. It implies τ(ζ)

∣∣de−Cεgz(ζ)
∣∣ ≤ µe−Cεgz(ζ), where µ = CεK. We choose

sufficiently small ε so that 0 < µ <
√

2. Then by Theorem 2.5, we have∫
C
e−Cεgz(ζ)|uf (ζ)|2e−2ϕ(ζ) dA(ζ)

.
∫
C
e−Cεgz(ζ)τ(ζ)2|∂̄χ(ζ)|2|f(ζ)|2e−2ϕ(ζ) dA(ζ)

.
∫
C
e−Cεdϕ(ζ,z)χ(ζ)|f(ζ)|2e−2ϕ(ζ) dA(ζ)

=

∫
Dβ(w)

e−Cεdϕ(ζ,z)χ(ζ)|f(ζ)|2e−2ϕ(ζ) dA(ζ).

Because e−Cεdϕ(ζ,z) . e−Cεdϕ(z,w), we get the followings from (7) and previ-
ous estimates:

|uf (z)|2e−2ϕ(z) .
1

τ(z)2

∫
Dβ(w)

e−Cεdϕ(ζ,z)χ(ζ)|f(ζ)|2e−2ϕ(ζ) dA(ζ)

.
1

τ(z)2
e−Cεdϕ(z,w)

∫
Dβ(w)

χ(ζ)|f(ζ)|2e−2ϕ(ζ) dA(ζ)

.
1

τ(z)2
e−Cεdϕ(z,w).

By using (4),

|K(z, w)| . eϕ(z)+ϕ(w)

τ(z)τ(w)
exp (−σdϕ(z, w)) , σ > 0.

Thus we get the result for every z, w ∈ C. �
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