
JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.17, NO.1, FEBRUARY, 2017 ISSN(Print) 1598-1657
https://doi.org/10.5573/JSTS.2017.17.1.162 ISSN(Online) 2233-4866

Manuscript received Jan. 6, 2017; accepted Feb. 7, 2017
Department of Computer Science and Engineering, Chungnam National
University, 99, Daehak-ro, Yuseong-gu, Daejeon, 305-764, Korea
E-mail : bgnam@cnu.ac.kr (Corresponding Author: Byeong-Gyu Nam)

Earliest Virtual Deadline Zero Laxity Scheduling for
Improved Responsiveness of Mobile GPUs

Seongrim Choi, Suhwan Cho, Jonghyun Park, and Byeong-Gyu Nam*

Abstract—Earliest virtual deadline zero laxity
(EVDZL) algorithm is proposed for mobile GPU
schedulers for its improved responsiveness.
Responsiveness of user interface (UI) is one of the key
factors in evaluating smart devices because of its
significant impacts on user experiences. However,
conventional GPU schedulers based on completely
fair scheduling (CFS) shows a poor responsiveness
due to its algorithmic complexity. In this letter, we
present the EVDZL scheduler based on the
conventional earliest deadline zero laxity (EDZL)
algorithm by accommodating the virtual laxity
concept into the scheduling. Experimental results
show that the EVDZL scheduler improves the
response time of the Android UI by 9.6% compared
with the traditional CFS scheduler.

Index Terms—GPU scheduler, responsiveness, BFS,
EDZL, mobile GPU, smart devices

I. INTRODUCTION

Responsiveness is one of the most important
performance factors in user interface (UI) on modern
smart devices as it indicates the latency that users
experience from user inputs to the display outputs on
smart devices [1]. Therefore, GPU throughput plays a
key role to this responsiveness but little was taken into
account in scheduling GPU tasks on GPU device drivers.

Traditionally, mobile GPU drivers have relied on the
completely fair scheduling (CFS) algorithm [2] that

allocates GPU resource to the process with the smallest
virtual runtime. However, this policy hurts the
responsiveness of devices because of its algorithmic
complexity to maintain its scalability to many-core
systems.

Recently, the BFS scheduler [3] is proposed for mobile
devices with a limited number of cores exploiting the
earliest virtual deadline first (EVDF) algorithm [4]. The
EVDF reduces the scheduling complexity for an
improved responsiveness by introducing the virtual
deadline which involves simpler calculation compared
with the virtual runtime used in the CFS algorithm.
However, the limited scalability of the EVDF leads to
virtual deadline misses on multi-core environments
which are becoming common in mobile GPUs thereby
increasing its response time. The original idea of the
EVDF can be found from the earliest deadline first
(EDF) algorithm in the real-time domain [5]. The EDF is
famous for its optimal scheduling in uniprocessor domain
but has a deadline missing problem in multi-core systems,
which is a similar phenomenon to the virtual deadline
misses associated with the EVDF algorithm. This
problem was solved by the least laxity first (LLF) and
earliest deadline zero laxity (EDZL) algorithms that
exploit the laxity of a task representing the spare time to
the deadline [6, 7]. In this letter, we take a similar
approach and propose the earliest virtual deadline zero
laxity (EVDZL) algorithm for an improved
responsiveness in mobile GPUs by incorporating the
virtual laxity into the EVDF, thus resolving the multi-
core scheduling problem of the EVDF. The EVDZL
inherits the lower complexity of the EVDF by exploiting
the virtual deadline and prevents the violation of virtual
deadline via the virtual laxity that takes the multi-core
domain into account, resulting in an improved

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.17, NO.1, FEBRUARY, 2017 163

responsiveness of smart devices.

II. EVDZL SCHEDULER

Completely fair scheduling (CFS) [2] is the most
widely used in GPU scheduling since it fairly allocates
GPU resource to each task by exploiting a virtual runtime
according to the Eq. (1). The virtual runtime considers
not only the weight of each task but also the execution
time of it to achieve the fairness in allocation of GPU
time to each task. However, the scheduling latency
increases because the Eq. (1) requires a division
operation in its calculation by incorporating the task
weight which is inversely proportional to task priority.

 0(,) (,)
()i i

i

ω
VR τ t A τ t

W τ
= ´ (1)

where (,)iVR τ t is the virtual runtime of a task iτ at
 time t ,

 0ω is the weight of a task with priority of zero,

 ()iW τ is the weight of a task iτ ,

 (,)iA τ t is the execution time of a task iτ at
 time t .

The BFS scheduler [3] based on the earliest virtual

deadline first (EVDF) algorithm [4] was proposed to
reduce this scheduling complexity of the CFS and thus
improving the responsiveness. As shown in Eq. (2), the
EVDF scheduling algorithm avoids the division of Eq.
(1) by introducing the virtual deadline which is
proportional to the task priority. The virtual deadline
becomes a guideline to improve the timeliness of a task.

 (,) (())i i iVD τ t t τ RRp= + ´ (2)

where (,)iVD τ t is the virtual deadline of a task iτ at
 time t ,

 ()iτp is the priority of a task iτ ,

 iRR is the round robin interval.

However, the virtual deadline in this algorithm might

be missed in multi-core systems (e.g. GPUs) because the
EVDF algorithm tries to run a task with the earliest

virtual deadline without any considerations on the time
slack to the virtual deadline, thereby hurting its
responsiveness. In real-time domain, a similar problem
appears in the earliest deadline first (EDF) algorithm [5]
that misses the deadline in multi-core environments. This
problem was resolved in the least laxity first (LLF) [6]
by accommodating the time slack to deadline, which is
represented as the laxity, in task scheduling. The LLF
algorithm schedules the tasks with the least laxity first
thereby meeting the deadline, but the laxity-based
scheduling incurs a huge overhead from frequent
switching of tasks. Earliest deadline zero laxity (EDZL)
algorithm [7] was studied to combine the strong points of
the EDF and LLF algorithms. It basically schedules tasks
based on their deadlines instead of the laxity and
switches to the laxity-based scheduling if it finds any
tasks with zero-laxity because the laxity of zero indicates
the task needs an immediate start or it will miss its
deadline. As a result, its task switching overhead gets
lower than that of the LLF algorithm by minimizing the
chances for the laxity-based scheduling.

Unfortunately, the laxity itself does not make sense in
non-realtime domain as it requires the deadline to be
specified in its calculation. Therefore, we introduce the
virtual laxity as in Eq. (3) that indicates the time slack to
the virtual deadline. This virtual laxity can be used to
avoid the virtual deadline violations associated with the
EVDF algorithm. We propose the earliest virtual
deadline zero laxity (EVDZL) algorithm based on this
virtual laxity as described in Algorithm 1. The proposed
EVDZL algorithm basically runs on the virtual deadline
but it switches to the virtual laxity if it finds any task
with a virtual laxity of zero from the scheduling queue.
Fig. 1 shows the behaviors of the EVDF and EVDZL
algorithms in a multi-core environment. We assume the
virtual deadline (VD) of a task τ1, τ2, and τ3 are at time 2,
3, and 1, respectively, and the virtual laxity (VL) of the τ1,
τ2, and τ3 at time of 0 are 1, 0, and 0, respectively. In the
EVDF algorithm of Fig. 1(a), the task τ1 with earlier
deadline is scheduled before the task τ2 even though the
task τ1 has time slack to the deadline, so the task τ2
misses its virtual deadline. On the other hand, the
EVDZL in Fig. 1(b) allocates tasks with the virtual laxity
of zero first to each core, and thus the task τ2 is scheduled
before the task τ1 thereby meeting its virtual deadline. As
described in Fig. 1, the EVDZL exploits the virtual

164 SEONGRIM CHOI et al : EARLIEST VIRTUAL DEADLINE ZERO LAXITY SCHEDULING FOR IMPROVED RESPONSIVENESS …

deadline for a reduced scheduling complexity and the
virtual laxity to prevent the violations of virtual deadlines.
As a result, the proposed EVDZL scheduler improves the
responsiveness of mobile GPUs by exploiting the strong

points of both the virtual deadline and virtual laxity
together.

 (,) (,) (,)i i iVL τ t VD τ t t e τ t= - - (3)

where (,)iVL τ t is the virtual laxity of a task iτ at time t ,

 (,)ie τ t is the remaining execution time of a task

 iτ at time t .

III. EXPERIMENTAL RESULTS

We use the Samsung Exynos5422 AP with the ARM
Mali-T628 GPU as a testbed for mobile GPU cores. All
GPU-related experiments are conducted on the Odroid-
XU3 board running the Android 4.4.2 Kitkat on Linux
kernel version 3.10.9.

As we need to know the remaining execution time of a
given task to evaluate its virtual laxity as in Eq. (3), we
acquire it by profiling GPU tasks in advance. In order to
evaluate the responsiveness of user interface (UI), we
used the System UI and SurfaceFlinger in Android
platform that provide built-in UI and display manager of
the platform, respectively. Responsiveness of the
Android UI is tested while the tasks for 3D graphics or
GPGPU are running on as background workloads to
show the EVDZL scheduling performance under
multiple GPU tasks.

Table 1 shows that the responsiveness of Android UI
under the EVDZL scheduling is improved by 9.6% and
4.9% in average for the 3D graphics and GPGPU
background tasks, respectively, compared to those on the
CFS scheduler.

IV. CONCLUSIONS

In this paper, a novel GPU scheduling algorithm
exploiting the virtual laxity as well as the virtual deadline
is proposed for mobile GPUs. The virtual laxity is
proposed to avoid the violations of virtual deadlines in

Algorithm 1. EVDZL

1: while (true) do
2: if there is any task with zero VL in the queue then
3: if there is any idle core in the GPU then
4: Execute the zero VL task on the idle core
5: else if there are any current tasks with positive VL then
6: Preempt the current task with largest VD
7: else
8: Fail to schedule
9: end if
10: else
11: if there is any idle core in the GPU then
12: Execute the earliest VD task on the idle core
13: else
14: Preempt the current task with largest VD
15: end if
16: end if
17: end while

(a)

Processing Time
10 2 3

Core 1 τ3 τ1

τ2

VD(τ2)

Core 2

VD(τ1)VD(τ3)

VD met

VL(τ1)=1
VL(τ2)=0
VL(τ3)=0

(b)

Fig. 1. Comparison of the EVDF and EVDZL algorithms in
multi-core environment (a) EVDF violates virtual deadline, (b)
EVDZL meets virtual deadline.

Table 1. Latency comparison of the EVDZL and CFS
schedulers regarding the background task categories

Algorithm 3D Graphics (ms) GPGPU (sec)
CFS 8.58 11.28

EVDZL 7.76 10.73

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.17, NO.1, FEBRUARY, 2017 165

multi-core systems and the virtual deadline is adopted for
a reduced complexity of the scheduling algorithm.
Thanks to these virtual timelines exploited together, the
proposed EVDZL scheduler demonstrates a 9.6%
improvement in the responsiveness of Android UI
compared with the CFS algorithm.

ACKNOWLEDGMENTS

This work was supported by research fund of
Chungnam National University.

REFERENCES

[1] A. Ng et al., “Design for Low-Latency Direct-
Touch Input,” In Proc. of ACM UIST’12, pp. 453-
464, Oct., 2012.

[2] T. Li et al., “Efficient and Scalable Multiprocessor
Fair Scheduling Using Distributed Weighted
Round-Robin,” in Proc. of the ACM Symp. on
Principles and Practice of Parallel Programming
(PPoPP), pp. 65-74, Feb. 2009.

[3] T. Groves et al. (2009). “BFS vs. CFS – Scheduler
Comparison,” The University of New Maxico,
http://cs.unm.edu/~eschulte/classes/cs587/data/bfs-
v-cfs_groves-knockel-schulte.pdf (accessed Jan. 5,
2017).

[4] Y. J. Choi and H.-M. Kim, “A New Scheduling
Scheme for High-Speed Packet Networks: Eaeliest
Virtual Deadline First,” Comput. Commun. Elsevier
J., Vol. 30, No. 10, pp. 2291-2300, July, 2007.

[5] C. L. Liu and J. W. Layland, “Scheduling
Algorithms for Multiprogramming in a Hard-Real-
Time Environment,” J. ACM, Vol. 20, No. 1, pp.
46-61, Jan. 1973.

[6] M. L. Dertouzos and A. K. Mok, “Multiprocessor
On-Line Scheduling of Hard-Real-Time Tasks,”
IEEE Trans. Software Engineering, Vol. 15, No. 12,
pp. 1497-1506, Dec., 1989.

[7] S. K. Lee, “On-Line Multiprocessor Scheduling
Algorithms for Real-Time Tasks,” in Proc. of the
IEEE Region 10’s Ninth Ann. Int’l Conf., pp. 607-
611, Aug. 1994.

Seongrim Choi received the B.S.
and M.S. degrees in computer
science and engineering from the
Chungnam National University
(CNU), Daejeon, in 2011 and 2013,
respectively, where he is currently
working toward the Ph.D. degree.

His current research interests include object recognition
processor and wearable SoC. He received the IEEE
Asian Solid-State Circuits Conference (A-SSCC)
Distinguished Design Award in 2016.

Suhwan Cho received the B.S.
degree in computer science and
engineering from the Chungnam
National University (CNU), Daejeon,
in 2015, where he is currently
working toward the M.S. degree. His
current research interests include

machine learning SoC and mobile GPU. He received the
Distinguished Design Award in the IEEE Asian Solid-
State Circuits Conference (A-SSCC) 2016.

Jonghyun Park received the B.S.
and M.S. degrees in computer
science and engineering from the
Chungnam National University
(CNU), Daejeon, in 2012 and 2015,
respectively. His research interests
include embedded OS design and

GPU scheduler design.

Byeong-Gyu Nam received his B.S.
degree (summa cum laude) in
computer engineering from Kyung-
pook National University, Daegu,
Korea, in 1999, M.S. and Ph.D.
degrees in electrical engineering and
computer science from Korea

Advanced Institute of Science and Technology (KAIST),
Daejeon, Korea, in 2001 and 2007, respectively. His
Ph.D. work focused on low-power GPU design for
wireless mobile devices. In 2001, he joined Electronics

166 SEONGRIM CHOI et al : EARLIEST VIRTUAL DEADLINE ZERO LAXITY SCHEDULING FOR IMPROVED RESPONSIVENESS …

and Telecommunications Research Institute (ETRI),
Daejeon, Korea, where he was involved in a network
processor design for InfiniBandTM protocol. From 2007
to 2010, he was with Samsung Electronics, Giheung,
Korea, where he worked on world first low-power 1-GHz
ARM CortexTM microprocessor design. Dr. Nam is
currently with Chungnam National University, Daejeon,
Korea, as an associate professor. He is serving as a vice
director of the System Design Innovation and
Application Research Center (SDIA), KAIST and a
member of steering committee of the IC Design
Education Center (IDEC), KAIST. His current interests
include mobile GPU, embedded microprocessor, low-
power SoC design, and embedded software platforms. He
co-authored the book Mobile 3D Graphics SoC: From
Algorithm to Chip (Wiley, 2010) and presented tutorials
on mobile processor design at IEEE ISSCC 2012 and
IEEE A-SSCC 2011. He is serving as the chair of Digital
Architectures and Systems (DAS) subcommittee in
ISSCC and a member of the TPC for IEEE ISSCC, IEEE
A-SSCC, IEEE COOL Chips, VLSI-DAT, ASP-DAC,
and ISOCC. He served as a Guest Editor of the IEEE
Journal of Solid-State Circuits (JSSC) and is an
Associate Editor of the IEIE Journal of Semiconductor
Technology and Science (JSTS).

