DOI QR코드

DOI QR Code

구조 특성을 반영한 인간형 로봇을 위한 실시간 CoM/ZMP 궤적 변환 방법

Real-Time CoM/ZMP Trajectory Transformation Method for Humanoid Robots Considering Structure Characteristics

  • 홍석민 (실감교류인체감응솔루션연구단)
  • Hong, Seok-Min (Center of Human-centered Interaction of Coexistence)
  • 투고 : 2017.02.07
  • 심사 : 2017.02.27
  • 발행 : 2017.02.28

초록

본 논문에서는 로봇의 구조나 보행 상황을 반영해 하나의 보행 패턴을 다른 보행 패턴으로 변환하게 해주는 영모멘트 점 (ZMP; zero moment point)와 질량 중심 (CoM; center of mass)의 실시간 변환 방법을 제안한다. 일반적으로 휴머노이드 로봇은 높이와 질량과 같은 자체적인 구조 특성을 가지고 있다. 이러한 구조적 특성으로 인해 인간 또는 휴머노이드 로봇으로부터 측정되거나 생성되어진 CoM / ZMP 보행 패턴을 다른 로봇에 직접 적용하는 것은 어렵다. 이를 위하여 간단한 휴머노이드 로봇 모델인 cart-table model을 사용해 보폭의 길이, 보행 시간, CoM 높이 변화에 따라 보행 패턴의 특성을 분석한다. 그러한 분석으로부터 변환 방정식을 유도하고 시뮬레이션을 통해 제안된 방법을 검증한다.

This paper proposes a transformation method of the zero moment point (ZMP) and the center of mass (CoM) from one walking pattern to other patterns by considering the structure of a robot or walking situations in real time. In general, a humanoid robot has own structure characteristics like height and mass. The structure characteristics make the given CoM/ZMP walking pattern of one human or one humanoid robot to be difficult to apply to other robot directly. For this purpose, we analyze the characteristics of walking patterns according to the step length, duration of walking support phase and the CoM height by using the cart-table model as the simple humanoid robot model. A transformation equation is derived from the analyzation and it is verified with simulation.

키워드

참고문헌

  1. K. Hirai, M. Hirose, Y. Haikawa, and T. Takenaka, "Development of Honda humanoid robot," in Proceeding of IEEE International Conference on Robotics and Automation, Leuven: Belgium, pp. 1321-1326, 1998.
  2. J. Yamaguchi, E. Soga, S. Inoue, and A. Takanishi, "Development of a bipedal humanoid robot control method of whole body cooperative dynamic biped walking," in Proceeding of IEEE International Conference on Robotics and Automation, Detroit: MI, pp. 2299-2306, 1999.
  3. K. Loffler, M. Gienger, and F. Pfeiffer, "Sensor and control design of a dynamically stable biped robot," in Proceeding of IEEE International Conference on Robotics and Automation, Taipei: Taiwan, pp.484-490, 2003.
  4. Boston Dynamics. [Internet]. Available: http://www.bostondynamics.com/robot_Atlas.html
  5. J. Lim, I. Lee, I. Shim, H. Jung, H. Joe, H. Bae, and K. Joo, "Robot system of DRC‐HUBO+ and control strategy of team KAIST in DARPA robotics challenge finals," Journal of Field Robotics, 2016.
  6. S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi and H. Hirukawa, "Biped walking pattern generation by using preview control of zero-moment point," in Proceeding of IEEE International Conference on Robotics and Automation, Taipei: Taiwan, pp. 1620-1626, 2003.
  7. S. Kajita, M. Morisawa, K. Harada, K. Kaneko, F. Kanehiro, K. Fujiwara, and H. Hirukawa, "Biped walking pattern generator allowing auxiliary ZMP control," in Proceeding of IEEE International. Conference on Intelligent Robotics and Systems, Beijing: China, pp. 2993-2999, 2006.
  8. Y. Oh, K. Ahn, D. Kim, and C. Kim, "An analytical method to generate walking pattern of humanoid robot," in Proceeding of IEEE International. Conference on Industrial Electronics Society, Paris: France, pp. 4159-4164, 2006.
  9. K. Harada, S. Kajita, K. Kaneko, and H. Hirukawa, "An analytical method on real-time Gait planning for a humanoid robot," in IEEE-RAS/RSJ International Conference on Humanoid Robots, Santa Monica: CA, pp. 640-655, 2004.
  10. Q. Huang, K. Yokoi, S. Kajita, K. Kaneko, H. Arai, N. Koyachi, and K.Tani, "Planning walking patterns for a biped robot," IEEE Transactions on Robotics and Automation, Vol. 17, No. 3, pp. 280-289, 2001. https://doi.org/10.1109/70.938385
  11. C. Zhu, Y. Tomizawa, X. Luo, and A. Kawamura, "Biped walking with variable ZMP, frictional constraint and inverted pendulum model," in Proceeding of IEEE International Conference on Robotics and Biomimetics, Shenyang: China, pp. 425-430, 2004.
  12. S. Hong, Y. Oh, Y. Chang, and B. You, "An omni-directional walking pattern generation method for humanoid robots with quartic polynomials," in Proceeding of IEEE International Conference on Intelligent Robotics and Systems, San Diego: CA, pp.4297-4213, 2007.
  13. Y. Choi, D. Kim, and B. You, "On the walking control for humanoid robot based on the kinematic resolution of CoM Jacobian with embedded motion," in Proceeding of IEEE International Conference on Robotics and Automation, Orlando: FL, pp. 2655-2660, 2006.
  14. S. Hong, Y. Oh, D. Kim, and B. You, "A walking pattern generation method with feedback and feedforward control for humanoid robots," in IEEE/RSJ International Conference on Intelligent Robotic, St. Louis: MO, pp.1078-1083, 2009.