DOI QR코드

DOI QR Code

구조 변형이 있는 평면 위의 비정상 유동해석을 위한 준-정상 기법

A Quasi-Steady Method for Unsteady Flows over Surfaces with Structural Deformation

  • 투고 : 2016.06.10
  • 심사 : 2016.12.03
  • 발행 : 2017.01.01

초록

본 논문은 초음속 공탄성(aeroelastics) 해석 시간 절약을 위한 준-정상 축약 모델을 제안하고 이를 검증하였다. 유동이 초음속이고 유동의 특성시간이 구조변형의 특성시간에 비해 작을 경우, 유동의 비정상성이 작아 비정상 유동해 대신 정상 유동해를 이용하여 공탄성 해석을 할 수 있다. 크리깅 기법을 적용하여 유동의 축약모델을 구축하였다. 매 시간 축약모델로부터 예측된 표면해가 구조해석의 경계조건으로 사용되었다. 크리킹 기법을 적용한 축약모델을 비정상해석 결과와 비교하여 검증하였다.

In this paper, we present and verify an aerodynamic reduced-order model (ROM) based on a quasi-steady flow method to reduce the computational cost of supersonic aeroelastic analysis. For supersonic flows, especially when the characteristic time scale of the flow is small compared to that of the structural motion, the unsteadiness of flow can be negligible, and quasi-steady solutions can be used instead of the unsteady solutions for the aeroelastic analysis. Kriging method is used to build the ROM of the aerodynamics. The surface solutions from the ROM are used as the boundary conditions for the structural analysis at each time-step. The ROM is validated against the unsteady solutions.

키워드

참고문헌

  1. Park, K.H., "Study on the POD Basis Weight Estimation Method for the Reduced Order Model of Aero-Structural Analysis of a Fighter Wing/Fuselage system," Workshop presentation file, The Korean Society For Aeronautical And Space Science, 2012, 1467-1473.
  2. Kwon, H.J., "Flutter Stability Prediction Using the Unsteady Aerodynamic Reduced-Order Model," Doctoral thesis, Korean Advanced Institute of Science and Technology, 2004.
  3. McNamara, J. J., Culler, A. J., Crowell, A. R., "Aerothermoelastic Modeling Considerations for Hypersonic Vehicles," 16th AIAA/DLR/DGLR International Space Planes and Hypersonic Systems and Technologies Conference, Bremen, Germany, 2009.
  4. Culler, A. J., and McNamara, J. J., "Studies on Fluid-Thermal Structural Coupling for Aerothermoelasticity in Hypersonic Flow," AIAA Journal, Vol. 48, No. 8, Aug. 2010, pp. 1721-1738. https://doi.org/10.2514/1.J050193
  5. Crowell, A. R., McNamara, J. J., Kecskemety, K. M., and Goerig, T. W., "A Reduced Order Aerothermodynamic Modeling Framework for Hypersonic Aerothermoelasticity," Proceedings of the 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Orlando, Florida.
  6. Crowell, A. R., McNamara, J. J., "Model Reduction of Computational Aerothermodynamics for Hypersonic Aerothermoelasticity," AIAA Journal, Vol. 50, No. 1., pp. 74-84. https://doi.org/10.2514/1.J051094
  7. Falkiewicz, N. J., "Reduced-Order Aerothermoelastic Analysis of Hypersonic Vehicle Structures," Ph.D. Dissertation, The University of Michigan, 2012.
  8. McNamara, J. J., Culler, A. J., Crowell, A. R., "Aerothermoelastic Modeling Considerations for Hypersonic Vehicles," 16th AIAA/DLR/DGLR International Space Planes and Hypersonic Systems and Technologies Conference, America, 2009.
  9. Culler, A. J., McNamara, J. J., "Studies on Fluid-Thermal-Structural Coupling for Aerothermoelasticity in Hypersonic Flow," AIAA Journal, Vol. 48, No. 8, Aug. 2010, pp. 1721-1738. https://doi.org/10.2514/1.J050193
  10. Roe, P.L., "Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes," Journal of Computational Physics, Vol. 32, 1981, pp.357-372.
  11. Van Leer, B., "Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme," Journal of computational physics, Vol.14, No.4, 1974, pp.361-370. https://doi.org/10.1016/0021-9991(74)90019-9
  12. Lee, N., Lee, S., Cho, H., Kwak, J. Y., Shin, S. J., "Computational analysis for flapping wing by coupled CFD and CSD solutions," 29th Congress of the International Council of the Aeronautical Sciences, St. Petersburg, Russia, 2014.
  13. Rendall, T. C. S., and Allen, C.B., "Unified fluid-structure interpolation and mesh motion using radial basis functions," International Journal For Numerical Method Engineering., Vol. 74, Issue. 10, 2008, pp. 1519-1559. https://doi.org/10.1002/nme.2219
  14. Wright, G.B., "Radial basis function interpolation: numerical and analytical developments," Ph.D. Dissertation, The University of Colorado, 2003.
  15. Zhang, W. W., Ye, Z. Y., Zhang, C. A., "Supersonic Flutter Analysis Based on a Local Piston Theory," AIAA Journal, Vol. 47, No. 10, 2009, pp. 2321-2328. https://doi.org/10.2514/1.37750
  16. Krige, D.G., "Statistical approach to some basic mine valuation problems on Witwatersrand," Chemical Metallurgical Mining Society, Vol. 53, No.2, 1952, pp.43-44.
  17. Lophaven, S. N., Nielsen, H. B., and Sondergaard, J., "DACE A Matlab Kriging Toolbox Version 2.0," Technical Report IMMTR-2002-12, Aug., 2002.