초록
무선 RSSI fingerprinting 방식은 기존 무선 인프라를 이용하면서 적정수준의 정확도를 얻을 수 있는 실내위치인식 방법 중의 하나이다. 하지만 라디오 맵 구성( fingerprint calibration) 과정에서 목표 환경의 다양한 위치에서 정확한 물리적 좌표와 무선 신호를 측정해야 하므로 시간과 노력이 많이 소요된다. 이 논문은 이러한 방식으로 위치 정보를 수집하지 않고 반지도식 자기조직화지도 학습 알고리즘을 사용하여 labeled RSSI를 얻고 RSSI 조합으로부터 맵을 구성하는 방법을 제안한다. 모의 데이터에 대한 실험을 통해 제안 방법이 fingerprint 데이터베이스로 부터 1%의 RSSI 샘플을 가지고 효과적인 전체 맵을 얻을 수 있다는 결론을 얻었다.
Wireless RSSI (Received Signal Strength Indication) fingerprinting is one of the most popular methods for indoor positioning as it provides reasonable accuracy while being able to exploit existing wireless infrastructure. However, the process of radio map construction (aka fingerprint calibration) is laborious and time consuming as precise physical coordinates and wireless signals have to be measured at multiple locations of target environment. This paper proposes a method to build the map from a combination of RSSIs without location information collected in a crowdsourcing fashion, and a handful of labeled RSSIs using a semi-supervised self organizing map learning algorithm. Experiment on simulated data shows promising results as the method is able to recover the full map effectively with only 1% RSSI samples from the fingerprint database.