참고문헌
- M. M. Li, and B. Verma, "Nonlinear curve fitting to stopping power data using RBF neural networks", Original Research Article, Expert Systems with Applications, vol. 45, pp. 161-171, March 2016. https://doi.org/10.1016/j.eswa.2015.09.033
- Z. -Q. Wu, W. -J. Jia, L. -R. Zhao, and C. -H. Wu, "Maximum wind power tracking based on cloud RBF neural network", Original Research Article, Renewable Energy, vol. 86, pp. 466-472, February 2016.
- B. Wu, S. Han, J. Xiao, X. Hu, and J. Fan, "Error compensation based on BP neural network for airborne laser ranging", Original Research Article, Optik - International Journal for Light and Electron Optics, vol. 127, pp. 4083-4088, April 2016. https://doi.org/10.1016/j.ijleo.2016.01.066
- S. K. Oh, W. D. Kim, W. Pedrycz, and K. S. Seo, "Fuzzy radial basis function neural networks with information granulation and its parallel genetic optimization", Fuzzy Sets and Systems, vol. 237, pp. 96-117, 2014. https://doi.org/10.1016/j.fss.2013.08.011
- C. Barat, and C. Ducottet, "String representations and distances in deep Convolutional Neural Networks for image classification", Original Research Article, Pattern Recognition, vol. 54, pp. 104-115, June 2016.
- B. A. Garro, K. Rodriguez, and R. A. Vazquez, "Classification of DNA microarrays using artificial neural networks and ABC algorithm", Original Research Article, Applied Soft Computing, vol. 38, pp. 548-560, January 20160 https://doi.org/10.1016/j.asoc.2015.10.002
- I. Hwang, H. -M. Park, and J. -H. Chang, "Ensemble of deep neural networks using acoustic environment classification for statistical model-based voice activity detection", Original Research Article, Computer Speech & Language, vol. 38, pp. 1-12, July 2016. https://doi.org/10.1016/j.csl.2015.11.003
- N. Nedjah, F. P. d. Silva, A. O. de Sa, L. M. Mourelle, and D. A. Bonilla, "A massively parallel pipelined reconfigurable design for M-PLN based neural networks for efficient image classification", Original Research Article, Neurocomputing, vol. 183, pp. 39-55, March 2016.
- A. Velasco-Mejia, and V. Vallejo-Becerra, A.U. Chavez-Ramirez, J. Torres-Gonzalez, Y. Reyes-Vidal, F. Castaneda-Zaldivar, "Modeling and optimization of a pharmaceutical crystallization process by using neural networks and genetic algorithms", Original Research Article Powder Technology, vol. 292, pp. 122-128, May 2016.
- L. Ozbakir, and Y. Delice, "Exploring comprehensible classification rules from trained neural networks integrated with a time-varying binary particle swarm optimizer", Original Research Article, Engineering Applications of Artificial Intelligence, vol. 24, pp. 491-500, April 2011. https://doi.org/10.1016/j.engappai.2010.11.008
- N. N. Son, and H. P. H. Anh, "Adaptive displacement online control of shape memory alloys actuator based on neural networks and hybrid differential evolution algorithm", Original Research Article Neurocomputing, vol. 166, pp. 464-474, October 2015.
- M. Pirdashti, K. Movagharnejad, S. Curteanu, E. N. Dragoi, and F. Rahimpour, "Prediction of partition coefficients of guanidine hydrochloride in PEG-phosphate systems using neural networks developed with differential evolution algorithm", Original Research Article, Journal of Industrial and Engineering Chemistry, vol 27, pp. 268-275, July 2015.
- W. Huang, S.K. Oh, Z. Guo, and W. Pedrycz, "A space search optimization algorithm with accelerated converagence strategies", Applied Soft Computing, vol. 13, pp. 4659-4675, 2013. https://doi.org/10.1016/j.asoc.2013.06.005
- G. d. Tollo, S. Tanev, G. Liotta, D. D. March, "Using online textual data, principal component analysis and artificial neural networks to study business and innovation practices in technology-driven firms", Original Research Article, Computers in Industry, vol. 74, pp. 16-28, December 2015.
- S. Rezzi, D. E. Axelson, K. Heberger, F. Reniero, C. Mariani, C. Guillou, "Classification of olive oils using high throughput flow 1H NMR fingerprinting with principal component analysis, linear discriminant analysis and probabilistic neural networks", Original Research Article, Analytica Chimica Acta, vol. 552, pp. 13-24, November 2005. https://doi.org/10.1016/j.aca.2005.07.057
- M. E. Tipping,"The Relevance Vector Machine", Advances in Neural Information Processing System, vol. 12, pp. 625-488, 2000.
- M. A. Tahir, A. Bouridane, F. Kurugollu, "Simultaneous feature selection and feature weighting using hybrid tabu search/K-nearest neighbor classifier", Pattern Recognition Letters, vol. 28, pp. 438-446, 2007. https://doi.org/10.1016/j.patrec.2006.08.016
- Z. R. Yang, "A Novel Radial Basis Function Neural Network for Discriminant Analysis", IEEE Transactions on Neural Networks, vol. 17, pp. 458-488, 2006.
- V. Vapnik, "The Nature of Statistical Learning Theory", Spring-Verlag, 1995.
- B. Minaei-Bidgoli, H. Parvin, H. Alinejad-Rokny, H. Alizadeh, W. E. Punch, "Effects of resampling method and adaptation on clustering ensemble efficacy", Artif. Intell. Rev, Vol. 41, No. 1, pp. 27-48, 2014. https://doi.org/10.1007/s10462-011-9295-x
- H. Parvin, M. Mirnabibaboli, H. Alinejad-Rokny, "Proposing a classifier ensemble framework based on classifier selection and decision tree", Engineering Applications of Artificial Intelligence, Vol. 37, pp. 34-42, 2015. https://doi.org/10.1016/j.engappai.2014.08.005
피인용 문헌
- Design of Reinforced Interval Type-2 Fuzzy C-Means-Based Fuzzy Classifier vol.26, pp.5, 2018, https://doi.org/10.1109/TFUZZ.2017.2785244
- Hybrid Fuzzy Wavelet Neural Networks Architecture Based on Polynomial Neural Networks and Fuzzy Set/Relation Inference-Based Wavelet Neurons vol.29, pp.8, 2018, https://doi.org/10.1109/TNNLS.2017.2729589
- Design of face recognition system based on fuzzy transform and radial basis function neural networks pp.1433-7479, 2018, https://doi.org/10.1007/s00500-018-3161-6