References
- Zhang, Y., L. Zhang, and X. Zhang. Mobile Robot path planning base on the hybrid genetic algorithm in unknown environment. in Intelligent Systems Design and Applications, 2008. ISDA'08. Eighth International Conference on. 2008. IEEE.
- Belkhouche, F., Reactive path planning in a dynamic environment. Robotics, IEEE Transactions on, 2009. 25(4): p. 902-911. https://doi.org/10.1109/TRO.2009.2022441
- Du Toit, N.E. and J.W. Burdick, Robot motion planning in dynamic, uncertain environments. Robotics, IEEE Transactions on, 2012. 28(1): p. 101-115. https://doi.org/10.1109/TRO.2011.2166435
- Parhi, D.R., Navigation of mobile robots using a fuzzy logic controller. Journal of intelligent and robotic systems, 2005. 42(3): p. 253-273.
- Li, W. Fuzzy logic-basedperception-action'behavior control of a mobile robot in uncertain environments. in Fuzzy Systems, 1994. IEEE World Congress on Computational Intelligence., Proceedings of the Third IEEE Conference on. 1994. IEEE.
- Jaradat, M.A.K., M.H. Garibeh, and E.A. Feilat, Autonomous mobile robot dynamic motion planning using hybrid fuzzy potential field. Soft Computing, 2012. 16(1): p. 153-164. https://doi.org/10.1007/s00500-011-0742-z
- Mobadersany, P., S. Khanmohammadi, and S. Ghaemi. An efficient fuzzy method for path planning a robot in complex environments. in Electrical Engineering (ICEE), 2013 21st Iranian Conference on. 2013. IEEE.
- Mendonca, M., L.V.R. de Arruda, and F. Neves Jr, Autonomous navigation system using event drivenfuzzy cognitive maps. Applied Intelligence, 2012. 37(2): p. 175-188. https://doi.org/10.1007/s10489-011-0320-1
- Farooq, U., et al. A two loop fuzzy controller for goal directed navigation of mobile robot. in Emerging Technologies (ICET), 2012 International Conference on. 2012.
- Er, M. J. and C. Deng, Obstacle avoidance of a mobile robot using hybrid learning approach. Industrial Electronics, IEEE Transactions on, 2005. 52(3): p. 898-905. https://doi.org/10.1109/TIE.2005.847576
- Hui, N.B. and D.K. Pratihar, A comparative study on some navigation schemes of a real robot tackling moving obstacles. Robotics and Computer-Integrated Manufacturing, 2009. 25(4): p. 810-828. https://doi.org/10.1016/j.rcim.2008.12.003
- Hui, N.B., V. Mahendar, and D.K. Pratihar, Timeoptimal, collision-free navigation of a car-like mobile robot using neuro-fuzzy approaches. Fuzzy Sets and Systems, 2006. 157(16): p. 2171-2204. https://doi.org/10.1016/j.fss.2006.04.004
- Pratihar, D.K., K. Deb, and A. Ghosh, A genetic-fuzzy approach for mobile robot navigation among moving obstacles. International Journal of Approximate Reasoning, 1999. 20(2): p. 145-172. https://doi.org/10.1016/S0888-613X(98)10026-9
- Dinham, M. and G. Fang. Time optimal path planning for mobile robots in dynamic environments. in Mechatronics and Automation, 2007. ICMA 2007. International Conference on. 2007. IEEE.
- Vukosavljev, S.A., et al. Mobile robot control using combined neural-fuzzy and neural network. in Computational Intelligence and Informatics (CINTI), 2011 IEEE 12th International Symposium on. 2011. IEEE.
- Singh, M.K., D.R. Parhi, and J.K. Pothal. ANFIS Approach for Navigation of Mobile Robots. in Advances in Recent Technologies in Communication and Computing, 2009. ARTCom'09. International Conference on. 2009. IEEE.
- Dominguez-Lopez, J.A., et al., Adaptive neurofuzzy control of a robotic gripper with on-line machine learning. Robotics and Autonomous Systems, 2004. 48(2): p. 93-110. https://doi.org/10.1016/j.robot.2004.06.001
- Kareem Jaradat, M.A., M. Al-Rousan, and L. Quadan, Reinforcement based mobile robot navigation in dynamic environment. Robotics and Computer-Integrated Manufacturing, 2011. 27(1): p. 135-149. https://doi.org/10.1016/j.rcim.2010.06.019
- Ratering, S. and M. Gini, Robot navigation in a known environment with unknown moving obstacles. Autonomous Robots, 1995. 1(2): p. 149-165. https://doi.org/10.1007/BF00711254
- Ge, S.S. and Y.J. Cui, Dynamic motion planning for mobile robots using potential field method. Autonomous Robots, 2002. 13(3): p. 207-222. https://doi.org/10.1023/A:1020564024509
- Sgorbissa, A. and R. Zaccaria, Planning and obstacle avoidance in mobile robotics. Robotics and Autonomous Systems, 2012. 60(4): p. 628-638. https://doi.org/10.1016/j.robot.2011.12.009
- Agirrebeitia, J., et al., A new APF strategy for path planning in environments with obstacles. Mechanism and Machine Theory, 2005. 40(6): p. 645-658. https://doi.org/10.1016/j.mechmachtheory.2005.01.006
- Yaonan, W., et al., Autonomous mobile robot navigation system designed in dynamic environment based on transferable belief model. Measurement, 2011. 44(8): p. 1389-1405. https://doi.org/10.1016/j.measurement.2011.05.010
- Li, G., et al., Effective improved artificial potential field-based regression search method for autonomous mobile robot path planning. International Journal of Mechatronics and Automation, 2013. 3(3): p. 141-170. https://doi.org/10.1504/IJMA.2013.055612
- Wilkie, D., J. van den Berg, and D. Manocha. Generalized velocity obstacles. in Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on. 2009. IEEE.
- Chunyu, J., et al. Reactive target-tracking control with obstacle avoidance of unicycle-type mobile robots in a dynamic environment. in American Control Conference (ACC), 2010. 2010. IEEE.
- Mucientes, M., et al., Fuzzy temporal rules for mobile robot guidance in dynamic environments. Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, 2001. 31(3): p. 391-398. https://doi.org/10.1109/5326.971667
- Chang, C.C. and K.-T. Song, Environment prediction for a mobile robot in a dynamic environment. Robotics and Automation, IEEE Transactions on, 1997. 13(6): p. 862-872. https://doi.org/10.1109/70.650165
- Mabu, S., A. Tjahjadi, and K. Hirasawa, Adaptability analysis of genetic network programming with reinforcement learning in dynamically changing environments. Expert Systems with Applications, 2012. 39(16): p. 12349-12357. https://doi.org/10.1016/j.eswa.2012.04.038
- Sendari, S., S. Mabu, and K. Hirasawa. Fuzzy genetic Network Programming with Reinforcement Learning for mobile robot navigation. in Systems, Man, and Cybernetics (SMC), 2011 IEEE International Conference on. 2011. IEEE.
- Li, X., et al., Probabilistic Model Building Genetic Network Programming Using Reinforcement Learning. 2011. 2(1): p. 29-40.
- Mabu, S., et al. Evaluation on the robustness of genetic network programming with reinforcement learning. in Systems Man and Cybernetics (SMC), 2010 IEEE International Conference on. 2010. IEEE.
- Mabu, S., et al. Genetic Network Programming with Reinforcement Learning Using Sarsa Algorithm. in Evolutionary Computation, 2006. CEC 2006. IEEE Congress on. 2006. IEEE.
- Sendari, S., S. Mabu, and K. Hirasawa. Two-Stage Reinforcement Learning based on Genetic Network Programming for mobile robot. in SICE Annual Conference (SICE), 2012 Proceedings of. 2012. IEEE.
- Li, X., S. Mabu, and K. Hirasawa, Towards the maintenance of population diversity: A hybrid probabilistic model building genetic network programming. Trans. of the Japanese Society for Evol. Comput, 2010. 1(1): p. 89-101.
- Sutton, R.S. and A.G. Barto, Reinforcement learning: An introduction. Vol. 1. 1998: Cambridge Univ Press.
Cited by
- A Q-learning approach based on human reasoning for navigation in a dynamic environment pp.1469-8668, 2018, https://doi.org/10.1017/S026357471800111X