References
- Aygun, A., Vasiliev, A.L., Padture, N.P. and Ma, X. (2007), "Novel thermal barrier coatings that are resistant to high-temperature attach by glassy deposits", Acta Materialia, 55, 6734-6745. https://doi.org/10.1016/j.actamat.2007.08.028
- Borom, M.P., Johnson, C.A. and Peluso, L.A. (1996), "Role of environment deposits and operating surface temperature in spallation of air plasma sprayed thermal barrier coatings", Surf. Coat. Technol., 86, 116-126.
- Drexler, J., Aygun, A., Li, D., Vassen, R., Steinke, T. and Padture, N.P. (2010a), "Thermal-gradient testing of thermal barrier coatings under simultaneous attack by molten glassy deposits and its mitigation", Surf. Coat. Technol., 204, 2683-2688 https://doi.org/10.1016/j.surfcoat.2010.02.026
- Drexler, J.M., Shinoda, K., Ortiz, A.L., Li, D., Vasiliev, A.L., Gledhill, A.D., Sampath, S. and Padture, N.P. (2010b), "Air-plasma-sprayed thermal barrier coatings that are resistant to high-temperature attach by glassy deposits", Acta Materialia, 58, 6835-6844. https://doi.org/10.1016/j.actamat.2010.09.013
- Evans, A.G., Mumm, D.R., Hutchinson, J.W., Meier, G.H. and Pettit, F.S. (2001), "Mechanisms controlling the durability of thermal barrier coatings", Progress in Materials Science, 46, 505-553. https://doi.org/10.1016/S0079-6425(00)00020-7
- Hamed, A. (1988), "Effect of particle characteristics on trajectories and blade impact patterns", J. Fluid. Eng., 110, 33-37. https://doi.org/10.1115/1.3243506
- Hutchinson, J.W. and Evans, A.G. (2002), "On the delamination of thermal barrier coatings in a thermal gradient", Surf. Coat. Technol., 149, 179-184. https://doi.org/10.1016/S0257-8972(01)01451-7
- Jordan, E.H., Xie, L., Ma, X., Gell, M., Padture, N.P., Cetegen, B., Ozturk, A., Roth, J., Xiao, T.D. and Bryant, P.E.C. (2004), "Superior thermal barrier coatings using solution precursor plasma spray", J. Therm. Spray Tech., 13(1), 57-65. https://doi.org/10.1007/s11666-004-0050-6
- Killinger, A., Gadow, R., Mauer, G., Guignard, A., Vassen, R. and Stover, D. (2011), "Review of new developments in suspension and solution precursor thermal spray processes", J. Therm. Spray Tech., 20(4), 677-695. https://doi.org/10.1007/s11666-011-9639-8
- Kramer, S., Yang, J. and Levi, C.G. (2008), "Infiltration-inhibiting reaction of gadolinium zirconate thermal barrier coatings with CMAS melts", J. Am. Ceramic Soc., 91, 576-583. https://doi.org/10.1111/j.1551-2916.2007.02175.x
- Levi, C.G., Hutchinson, J.W., Vidal-Setif, M.H. and Johnson, C.A. (2012), "Environmental degradation of thermal-barrier coatings by molten deposits", MRS Bull, 37, 932-941. https://doi.org/10.1557/mrs.2012.230
- LSTC (2007), LS-DYNA Keyword User's Manual, Version 971, Volume I, May, Livermore Software Technology Corporation (LSTC), Livermore, CA.
- Murugan, D.M., Tabakoff, W. and Hamed, A. (1994), "Computation of particle restitution characteristics using DYNA3D for turbomachinery application", 30th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Indianapolis, Indiana, June.
- Padture, N.P., Gell, M. and Jordan, E. H. (2002), "Thermal barrier coatings for gas-turbine engine applications", Science, 296, 280-284. https://doi.org/10.1126/science.1068609
- Rai, A.K., Bhattacharya, R.S., Wolfe, D.E. and Eden, T.J. (2010), "CMAS-resistant thermal barrier coatings", Int. J. Appl. Ceramic Tech., 7, 662-674.
- Smialek, J.L., Archer, F.A. and Garlick, R.G. (1994), "Turbine airfoil degradation in the Persian Gulf war", JOM, 46, 39-41.
- Stover, D., Pracht, G., Lehmann, H., Dietrich, M., Do ring, J.E. and Vassen, R. (2004), "New material concepts for the next generation of plasma-sprayed thermal barrier coatings", J. Therm. Spray Tech., 13(1), 76-83. https://doi.org/10.1007/s11666-004-0052-4
- Tabakoff, W. (1991), "Measurements of particles rebound characteristics on materials used in gas turbines", J. Propuls., 7(5), 805-813. https://doi.org/10.2514/3.23395
- Tabakoff, W., Murugan, D.M. and Hamed, A. (1994), "Effect of target materials on the particle restitution characteristics for turbomachinery application", 32nd Aerospace Sciences Meeting & Exhibit, Reno, Nevada, Janunary.
Cited by
- Binary collision of CMAS droplets-Part I: Equal-sized droplets vol.35, pp.17, 2020, https://doi.org/10.1557/jmr.2020.138
- Calcia-magnesia-alumina-silica particle deposition prediction in gas turbines using a Eulerian-Lagrangian approach in computational fluid dynamics vol.35, pp.17, 2017, https://doi.org/10.1557/jmr.2020.233
- Physical aspects of CMAS particle dynamics and deposition in turboshaft engines vol.35, pp.17, 2020, https://doi.org/10.1557/jmr.2020.234
- Smoothed Particle Hydrodynamics Simulation of High Velocity Impact Dynamics of Molten Sand Particles vol.13, pp.19, 2017, https://doi.org/10.3390/en13195134
- Calcia-magnesia-alumina-silicate (CMAS) attack mechanisms and roadmap towards Sandphobic thermal and environmental barrier coatings vol.66, pp.7, 2017, https://doi.org/10.1080/09506608.2020.1824414