The Evaluation of Hybrid-Volumetric Modulated Arc Therapy for Lung Cancer Radiation Therapy

폐암 방사선 치료 시 Hybrid-Volumetric Modulated Arc Therapy의 유용성 평가

  • Lee, Geon Ho (Department of Radiation Oncology, Ulsan University Hospital) ;
  • Kang, Hyo Seok (Department of Radiation Oncology, Ulsan University Hospital) ;
  • Choi, Byoung Joon (Department of Radiation Oncology, Ulsan University Hospital) ;
  • Park, Sang Jun (Department of Radiation Oncology, Ulsan University Hospital) ;
  • Jung, Da Ee (Department of Radiation Oncology, Ulsan University Hospital) ;
  • Lee, Du Sang (Department of Radiation Oncology, Ulsan University Hospital) ;
  • Ahn, Min Woo (Department of Radiation Oncology, Ulsan University Hospital) ;
  • Jeon, Myeong Soo (Department of Radiation Oncology, Ulsan University Hospital)
  • 이건호 (울산대학교병원 방사선종양학과) ;
  • 강효석 (울산대학교병원 방사선종양학과) ;
  • 최병준 (울산대학교병원 방사선종양학과) ;
  • 박상준 (울산대학교병원 방사선종양학과) ;
  • 정다이 (울산대학교병원 방사선종양학과) ;
  • 이두상 (울산대학교병원 방사선종양학과) ;
  • 안민우 (울산대학교병원 방사선종양학과) ;
  • 전명수 (울산대학교병원 방사선종양학과)
  • Published : 2017.12.29

Abstract

Objectives: In the Lung, the VMAT rotates continuously and examines radiation. That increases the low doses to normal lung. Due to that, the incidence of radiation pneumonia among radiation side effects may increase. The cause of radiation pneumonia is the lower dose area of the lungs. The H-VMAT was applied to patients who applied to reduce radiation in the lower doses of the lungs. We wanted to assess the usefulness of the H-VMAT by comparing the radiation doses to the low dose areas of the lungs and the normal organs. Materials and Methods: A total of 26 patients who applied for a H-VMAT procedure were applied to the patient. The prescription dose applied to total dose 44 Gy from 22 divisions. For each patient, a plan was implemented with Conventional RT, VMAT and H-VMAT. Conventional RT was carried out in four to five fields each, considering the size, location, shape, and location of the PTV. In the case of a VMAT plan, the two Half ARC, three Half ARC method and the two Full ARC were planned. The H-VMAT was planned by adding two Static fields in the VMAT, taking into account the dose of the lung and the tolerance dose of the organs. Results: In the NSCLC, the lung doses $V_5$ and $V_{10}$ of the lungs except for the treatment plan volume were the lowest with $55.40{\pm}13.39%$ and $32.05{\pm}11.37%$ of H-VMAT. And, in the SCLC, the lung doses of V5 and V10 were the lowest at $64.32{\pm}16.15%$ and $35.50{\pm}9.91%$, respectively. The spinal dose of VMAT in NSCLC was $21.15{\pm}4.02Gy$, which was 7.94 Gy lower than other treatment methods. The lowest spinal dose was delivered at $19.72{\pm}1.82Gy$ for SCLC. The mean dose delivered to the esophagus was also $17.44{\pm}2.04Gy$ and $17.84{\pm}9.20Gy$ in SCLC and NSCLC, respectively. Conclusion: When comparing the value of the surrounding normal organ dose, the VMAT showed that less doses were transmitted from the heart, esophagus and spinal cord than the rest of the treatment plan. However, it was similar to VMAT in normal organs except for the spinal cord. VMAT has increased doses of some normal organs but did not exceed the tolerance dose. It showed a low value in $V_5$, $V_{10}$. When comparing Conventional RT, VMAT, and H-VMAT, If the dose to the heart, esophagus and spinal cord is lower than the tolerance dose, it is thought to reduce the incidence of radiation pneumonia by applying H-VMAT that show the benefits of low doses of the lungs.

목 적: 폐에서 VMAT치료는 연속적으로 회전을 하면서 방사선을 조사하므로 정상적인 폐에 저 선량을 증가시킨다. 이로 인해 방사선 부작용 중 방사선 폐렴의 발생률이 증가 할 수 있다. 본 연구에서는 방사선 폐렴의 발생 확률 증가 원인이 되는 폐의 저 선량 영역의 방사선을 줄일 수 있는 H-VMAT 방법을 적용하여 치료를 받은 환자를 대상으로 치료계획별 폐의 저 선량 영역과 주변 정상장기들에 전달되는 방사선량을 비교 분석하여 H-VMAT의 유용성을 평가하고자 하였다. 대상 및 방법: 폐암방사선 치료 환자 중 H-VMAT 방법을 적용한 환자 25명을 대상으로 하였으며, 치료 계획용 용적의 처방선량은 총 선량 44 Gy를 22회 분할 조사로 적용하였다. 각 환자마다 Conventional RT, VMAT, H-VMAT 방법으로 계획을 진행하였다. Conventional RT는 치료계획용적의 크기, 위치, 모양 및 주변장기들의 위치를 고려하여 4~5개 조사야로 치료계획을 진행하였고, VMAT 치료계획의 경우는 $360^{\circ}$를 2번 회전하는 방법과 $180^{\circ}$를 2~3회 회전하는 방법으로 계획하였다. H-VMAT은 폐의 선량 및 주변 장기의 허용선량을 고려하여 VMAT 치료계획에서 2개의 고정조사야를 추가 하여 계획하였다. 결 과: 폐선량은 비소세포성폐암에서 치료계획용적을 제외한 폐의 $V_5$, $V_{10}$은 H-VMAT이 $55.40{\pm}13.39%$, $32.05{\pm}11.37%$로 가장 낮았고, 소세포성폐암에서도 $V_5$, $V_{10}$의 값은 $64.32{\pm}16.15%$, $35.50{\pm}9.91%$로 가장 낮았다. 비소세포성폐암에서 VMAT의 척수 선량은 $21.15{\pm}4.02Gy$로 다른 치료방법과 비교하여 최대 7.94 Gy 차이만큼 낮은 선량이 전달되었고, 소세포성폐암에서는 $19.72{\pm}1.82Gy$로 가장 낮은 선량을 보였다. 심장의 $V_{20}$은 H-VMAT와 VMAT의 비교 결과 VMAT이 최대 16.2 % 더 낮은 값을 보이기도 하였다. 식도에 전달되는 평균선량 역시 소세포성폐암과 비소세포성폐암에서 $17.44{\pm}2.04Gy$, $17.84{\pm}9.20Gy$로 VMAT이 가장 낮았다. 결 론: 주변 정상 장기 선량의 값을 비교해 보았을 때, VMAT에서는 심장, 식도, 척수 등에서 나머지 치료계획보다 더 적은 선량이 전달되는 것을 알 수 있었다. 하지만 척수를 제외한 나머지 장기에서는 H-VMAT과 큰 차이를 보이지 않았다. H-VMAT은 일부 정상 장기의 선량이 증가하였지만 허용선량을 초과하지 않았다. 그리고 폐의 $V_5$, $V_{10}$에서 낮은 값을 보였다. Conventional RT, VMAT, H-VMAT을 비교하였을 때 심장, 식도, 척수 등에 전달되는 선량이 부작용을 발생시킬 수 있는 선량보다 적다면 폐의 저 선량 영역의 장점을 보이는 H-VMAT 방법을 적용함으로써 방사선폐렴의 발생률을 낮출 수 있을 것이라고 사료된다.

Keywords

References

  1. ICRU, International Commission on Radiation Units and Measurements. Report 62: Prescribing, Recording and Reporting Photon Beam Therapy (Supplement to ICRU Report 50), 1999.
  2. Farshad F, Lesley W, Mathias B, Annette H, Colin H, Daniel P, Jim C, Suki G, Keen HT, and Tomas K. A dosimetric comparison of 3D conformal vs intensity modulated vs volumetric arc radiation therapy for muscle invasive bladder cancer. Radiat Oncol Biol Med.2012; 7: 111. https://doi.org/10.1186/1748-717X-7-111
  3. Gross NJ, Pulmonary effects of radiation theraphy. Ann Interb Med.1977;86:81-92. https://doi.org/10.7326/0003-4819-86-1-81
  4. 안진영, 이연선, 권선중, 박희선, 정성수, 김진환, 김주옥, 조문준, 김선영. 방사선 치료를 시행 받은 폐암 환자에서 방사선 폐렴의 발생에 관한 예측 인자. Vol. 56, No. 1, Jan, 2004.
  5. Wang JY, Chen KY, Wang JT, Chen JH, Lin JW, Wang HC et al. Outcome and Pro-gnostic factors for patients with Non-small cell lung cancer and severe radiation pne-umonitis. Int J Radiat Oncol Biol Phys.2002;54:735-41. https://doi.org/10.1016/S0360-3016(02)02994-2
  6. 심영수. 폐암의 치료. 한용철. 임상 호흡기학. 서울:일조각;1990. p.281-2.
  7. Perry MC, Eaton WL, Propert WL, Ware JH, Zimmer B, Chahinian AP et al. Chemo-therapy with or without radiation therapy inlimited small-cell carcinoma of the lung. N Engl J Med 1987;316:912-8. https://doi.org/10.1056/NEJM198704093161504
  8. Turrisi AT, Glover DJ, Mason B. A preliminary report:concurrent twice-daily ra-diotherapy plus-platinum-etoposide chemotherapy for limited small cell lung cancer. Int J radiat Onc Biol Phys 1988;15:183-7. https://doi.org/10.1016/0360-3016(88)90364-1
  9. Moron RF, Jett JR, McGinnis WL. Thoracic radiation therapy alone compared with combined chemotherapy for locally unresectable non-small cell lung cancer. Annals Int Med 1991;115:681-6. https://doi.org/10.7326/0003-4819-115-9-681
  10. Segawa Y, Takigawa N, Kataoka M, TakataI, Fujimoto N, Ueoka H. Risk factors for development of radiation pneumonitis following radiation therapy with or without che-motherapy for lung cancer. Int J Radiat Onco Biol phys 1997;39:91-8. https://doi.org/10.1016/S0360-3016(97)00297-6
  11. Soumik G, Rakesh K, Rajesh G, Divya K, Rakesh K, Arun SO, Reena S, Suresh CS. An evaluation of three dimensional conformal radiation therapy versus intensity modulated radiation therapy in radical chemoradiation of esophageal cancer: A dosimetric study. Department of Radiotherapy and Oncology, Institute of Medical Education and Research, Chandigarh, India 2012:65-70.
  12. Pinnix CC, Smith GL, Milgrom S, et al. Predictors of radiation pneumonitis in patients receiving intensity modulated radiation therapy for Hodgkin and non-Hodgkin lymphoma. Int J Radiat Oncol Biol Phys. 2015;92(1):175-182. https://doi.org/10.1016/j.ijrobp.2015.02.010
  13. Wang S, Liao Z, Wei X, et al. Analysis of clinical and dosimetric factors associated with treatment-related pneumonitis (TRP) in patients with non-smallcell lung cancer (NSCLC) treated with concurrent chemotherapy and three-dimensional conformal radiotherapy (3D-CRT). Int J Radiat Oncol Biol Phys. 2006;66(5):1399-1407. https://doi.org/10.1016/j.ijrobp.2006.07.1337
  14. Dr Emami B . Tolerance of Normal Tissue to Therapeutic Radiation Department of Radiation Oncology, Loyola University Medical Center, Maywood, Illinois, USA 2013;39.
  15. Scott R. Silva, MD, PhD, Murat Surucu, PhD, Jennifer Steber, CMD, Matthew M. Harkenrider, MD, and Mehee Choi. Clinical Application of a Hybrid RapidArc Radiotherapy Technique for Locally. MD Technology in Cancer Research & Treatment.2016.1-7.
  16. Diane C. Ling, Clayton B. Hess, Allen M. Chen, Megan E. Daly. Comparison of Toxicity Between Intensity-Modulated Radiotheraphy and 3-Dimensional Conformal Radiotherapy for Locally Advanced Non-small-cell Lung Cancer. Clinical Lung Cancer. 2016. 18-23.
  17. Shaw E, Kline R, Gillin M, et al. Radiation Therapy Oncology Group: radiosurgery quality assurance guidelines. Int J Radiat Oncol Biol Phys. 1993;27(5):1231-1239. https://doi.org/10.1016/0360-3016(93)90548-A