DOI QR코드

DOI QR Code

카로티노이드 생산 Sphingobacteriaceae SH-48 균주의 유전체 염기서열 분석

Genome sequence of carotenoid producing Sphingobacteriaceae bacterium SH-48 isolated from freshwater in Korea

  • 최아영 (국립낙동강생물자원관 배양기술개발부) ;
  • 정유진 (국립낙동강생물자원관 배양기술개발부) ;
  • 남영호 (국립낙동강생물자원관 배양기술개발부) ;
  • 최강국 (국립낙동강생물자원관 배양기술개발부)
  • Choi, Ahyoung (Culture Techniques Research Division, Nakdonggang National Institute of Biological Resources) ;
  • Chung, Eu Jin (Culture Techniques Research Division, Nakdonggang National Institute of Biological Resources) ;
  • Nam, Young Ho (Culture Techniques Research Division, Nakdonggang National Institute of Biological Resources) ;
  • Choi, Gang-Guk (Culture Techniques Research Division, Nakdonggang National Institute of Biological Resources)
  • 투고 : 2017.09.21
  • 심사 : 2017.12.04
  • 발행 : 2017.12.31

초록

그람 음성이며 막대모양의 Sphingobacteriaceae bacterium SH-48은 삼척 소한천에서 분리하였다. SH-48에 대한 유전체 분석을 실시하였으며, G + C 비율이 38.4%인 5,650,162 bp 크기의 염기서열을 얻었다. 유전체 특징은 카로티노이드 생합성 유전자인 crt 유전자 클러스터를 보유하고 있어 균주의 잠재적 중요성을 보여준다. 이러한 유전체 정보는 카로티노이드 생합성 경로에 대한 새로운 정보를 제공한다.

We sequenced the genome of the Sphingobacteriaceae bacterium SH-48 isolated from the Sohan stream in Republic of Korea by using a dilution-to-extinction culturing method. The sequences were assembled into a draft genome containing 5,650,162 bp with a G + C content of 35.4% and 4,856 protein-coding genes in 2 contigs. This strain contains the carotenoid biosynthesis genes crtY, crtZ, crtD, crtI, crtB, and crtH as gene clusters. This genomic information provides new insights into the carotenoid biosynthesis pathway.

키워드

참고문헌

  1. Aziz, R.K., Bartels, D., Best, A.A., De Jongh, M., Disz, T., Edwards, R.A., Formsma, K., Gerdes, S., Glass, E.M., Kubal, M., et al. 2008. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9, 75. https://doi.org/10.1186/1471-2164-9-75
  2. Chen, W.M., Chen, Y.L., and Sheu, S.Y. 2016. Mucilaginibacter roseus sp. nov., isolated from a freshwater river. Int. J. Syst. Evol. Microbiol. 66, 1112-1118. https://doi.org/10.1099/ijsem.0.000838
  3. Chin, C.S., Alexander, D.H., Marks, P., Klammer, A.A., Drake, J., Heiner, C., Clum, A., Copeland, A., Huddleston, J., Eichler, E.E., et al. 2013. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat. Methods 10, 563-569. https://doi.org/10.1038/nmeth.2474
  4. Connon, S.A. and Giovannoni, S.J. 2002. High-throughput methods for culturing microorganisms in very-low-nutrient media yield diverse new marine isolates. Appl. Environ. Microbiol. 68, 3878-3885. https://doi.org/10.1128/AEM.68.8.3878-3885.2002
  5. Jagannadham, M.V., Chattopadhyay, M.K., Subbalakshmi, C., Vairamani, M., Narayanan, K., Rao, C.M., and Shivaji, S. 2000. Carotenoids of an Antarctic psychrotolerant bacterium, Sphingobacterium antarcticus, and a mesophilic bacterium, Sphingobacterium multivorum. Arch. Microbiol. 173, 418-424. https://doi.org/10.1007/s002030000163
  6. Krinsky, N.I. 1978. Non-photosynthetic functions of carotenoids. Phil. Trans. R. Soc. Lond. B. Biol. Sci. 284, 581-590. https://doi.org/10.1098/rstb.1978.0091
  7. Lagesen, K., Hallin, P., Rodland, E.A., Staerfeldt, H.H., Rognes, T., and Ussery, D.W. 2007. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 35, 3100-3108. https://doi.org/10.1093/nar/gkm160
  8. Lowe, T.M. and Eddy, S.R. 1997. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25, 955-964. https://doi.org/10.1093/nar/25.5.0955
  9. Olson, J.A. and Krinsky, N.I. 1995. The colorful, fascinating world of the carotenoids: important physiologic modulators. FASEB J. 9, 1547-1550. https://doi.org/10.1096/fasebj.9.15.8529833
  10. Overbeek, R., Begley, T., Butler, R.M., Choudhuri, J.V., Chuang, H.Y., Cohhon, M., Crecy-Lagard, V., Diaz, N., Disz, T., and Edwards, R. 2005. The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes. Nucleic Acids Res. 33, 5691-5702. https://doi.org/10.1093/nar/gki866
  11. Prasad, S., Manasa, P., Buddhi, S., Pratibha, M.S., Begum, Z., Bandi, S., Tirunagari, P., and Shivaji, S. 2013. Arcticibacter svalbardensis gen. nov., sp. nov., of the family Sphingobacteriaceae in the phylum Bacteroidetes, isolated from Arctic soil. Int. J. Syst. Evol. Microbiol. 63, 1627-1632. https://doi.org/10.1099/ijs.0.044420-0
  12. Punta, M., Coggill, P.C., Eberhardt, R.Y., Mistry, J., Tate, J., Boursnell, C., Pang, N., Forslund, K., Ceric, G., Clements, J., et al. 2012. The Pfam protein families database. Nucleic Acids Res. 40, D290-D301. https://doi.org/10.1093/nar/gkr717
  13. Shahmohammadi, H.R., Asgarani, E., Terato, H., Saito, T., Ohyama, Y., Gekko, K., Yamamoto, O., and Ide, H. 1998. Protective roles of bacterioruberin and intracellular KCl in the resistance of Halobacterium salinarium against DNA damaging agents. J. Radiat. Res. 39, 251-262. https://doi.org/10.1269/jrr.39.251
  14. Sheu, S.Y., Chen, Y.L., and Chen, W.M. 2016. Mucilaginibacter fluminis sp. nov., isolated from a freshwater river. Int. J. Syst. Evol. Microbiol. 66, 4567-4574. https://doi.org/10.1099/ijsem.0.001392
  15. Tatusov, R.L., Fedorova, N.D., Jackson, J.D., Jacobs, A.R., Kiryutin, B., Koonin E.V., Krylov, D.M., Mazumdr, R., Mekhedov, S.L., Nikolskaya, A.N., et al. 2003. The COG database: an updated version includes eukaryotes. BMC Bioinformatics 4, 41. https://doi.org/10.1186/1471-2105-4-41
  16. Yang, S.J., Kang, I., and Cho, J.C. 2016. Expansion of cultured bacterial diversity by large-scale dilution-to-extinction culturing from a single seawater sample. Microb. Ecol. 71, 29-43. https://doi.org/10.1007/s00248-015-0695-3