DOI QR코드

DOI QR Code

Complete genome sequence of Betaproteobacteria strain GR16-43 isolated form a freshwater pond in South Korea

담수에서 분리한 Betaproteobacteria GR16-43의 유전체 염기서열 분석

  • Choi, Ahyoung (Culture Techniques Research Division, Nakdonggang National Institute of Biological Resources) ;
  • Baek, Kiwoon (Bacterial Resources Research Division, Nakdonggang National Institute of Biological Resources) ;
  • Chung, Eu Jin (Culture Techniques Research Division, Nakdonggang National Institute of Biological Resources) ;
  • Kim, Jee-Hwan (Bioresources Culture Collection Division, Nakdonggang National Institute of Biological Resources) ;
  • Choi, Gang-Guk (Culture Techniques Research Division, Nakdonggang National Institute of Biological Resources)
  • 최아영 (국립낙동강생물자원관 배양기술개발부) ;
  • 백기운 (국립낙동강생물자원관 원핵생물조사연구부) ;
  • 정유진 (국립낙동강생물자원관 배양기술개발부) ;
  • 김지환 (국립낙동강생물자원관 균주보존분양부) ;
  • 최강국 (국립낙동강생물자원관 배양기술개발부)
  • Received : 2017.09.06
  • Accepted : 2017.09.19
  • Published : 2017.12.31

Abstract

A betaproteobacterium strain GR16-43 was isolated from a surface layer of the Geomnyong Pond in Republic of Korea by a dilution-to-extinction culturing method. We report the whole genome sequence of the strain GR16-43, which contains 4,806,848 bp with a G + C content 67.12%, and to include 4,424 protein-coding genes and 47 transfer RNA genes. The genome was determined to contain the genes encoding carbon monoxide dehydrogenase, nitrate reductase, nitrite reductase, nitric oxide reductase, and the sulfur oxidation (sox) gene cluster, highlighting the potential importance of the bacterial group represented by the strain in the cycling of inorganic elements. These results indicate that strain GR16-43 genome showed several traits indicating adaptation of the bacteria to living in freshwater environments.

그람 음성이며 긴 막대 모양의 betaproteobacteria에 속하는 GR16-43을 한강 발원지 검룡소에서 분리하였다. GR16-43 균주에 대한 유전체분석을 실시하였으며, G + C 비율이 67.12%인 4,806,848 bp 크기의 염기서열을 얻었다. 유전체 특징은 황산화와 관련된 다량의 유전자를 보유하고 있어 균주의 잠재적 중요성을 보여준다. 이러한 결과는 GR16-43 균주가 빈영양 담수 환경에서의 적응 연구를 위한 유전체 정보를 제공한다.

Keywords

References

  1. Aziz, R.K., Bartels, D., Best, A.A., DeJongh, M., Disz, T., Edwards, R.A., Formsma, K., Gerdes, S., Glass, E.M., Kubal, M., et al. 2008. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9, 75. https://doi.org/10.1186/1471-2164-9-75
  2. Chin, C.S., Alexander, D.H., Marks, P., Klammer, A.A., Drake, J., Heiner, C., Clum, A., Copeland, A., Huddleston, J., Eichler E.E., et al. 2013. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat. Methods 10, 563-569. https://doi.org/10.1038/nmeth.2474
  3. Griffiths-Jones, S., Moxon, S., Marshall, M., Khanna, A., Eddy, S.R., and Bateman, A. 2005. Rfam: annotating non-coding RNAs in complete genomes. Nucleic Acids Res. 33, D121-D124.
  4. Krogh, A., Larsson, B., Von Heijne, G., and Sonnhammer, E.L. 2001. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol. 305, 567-580. https://doi.org/10.1006/jmbi.2000.4315
  5. Lagesen, K., Hallin, P., Rodland, E.A., Staerfeldt, H.H., Rognes, T., and Ussery, D.W. 2007. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 35, 3100-3108. https://doi.org/10.1093/nar/gkm160
  6. Lowe, T.M. and Eddy, S.R. 1997. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25, 955-964. https://doi.org/10.1093/nar/25.5.0955
  7. Newton, R.J., Jones, S.E., Eiler, A., McMahon, K.D., and Bertilsson, S. 2011. A guide to the natural history of freshwater lake bacteria. Microbiol. Mol. Biol. R. 75, 14-49. https://doi.org/10.1128/MMBR.00028-10
  8. Petersen, T.N., Brunak, S., von Heijne, G., and Nielsen, H. 2011. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat. Methods 8, 785-786. https://doi.org/10.1038/nmeth.1701
  9. Punta, M., Coggill, P.C., Eberhardt, R.Y., Mistry, J., Tate, J., Boursnell, C., Pang, N., Forslund, K., Ceric, G., Clements, J., et al. 2012. The Pfam protein families database. Nucleic Acids Res. 40, D290-D301. https://doi.org/10.1093/nar/gkr1065
  10. Tatusov, R.L., Fedorova, N.D., Jackson, J.D., Jacobs, A.R., Kiryutin, B., Koonin E.V., Krylov, D.M., Mazumdr, R., Mekhedov, S.L., Nikolskaya, A.N., et al. 2003. The COG database: an updated version includes eukaryotes. BMC Bioinformatics 4, 41. https://doi.org/10.1186/1471-2105-4-41
  11. Van der Gucht, K., Vandekerckhove, T., Vloemans, N., Cousin, S., Muylaert, K., Sabbe, K., Gillis, M., De Meester, L., and Vyverman, W. 2005. Characterization of bacterial communities in four freshwater lakes differing in nutrient load and food web structure. FEMS Microbiol. Ecol. 53, 205-220. https://doi.org/10.1016/j.femsec.2004.12.006
  12. Wu, C.H., Apweiler, R., Bairoch, A., Natale, D.A., Barker, W.C., Boeckmann, B., Ferro, S., Gasteiger, E., Huang, H., Lopez, R., et al. 2006. The Universal Protein Resource (UniProt): an expanding universe of protein information. Nucleic Acids Res. 34, D187-D191. https://doi.org/10.1093/nar/gkj161
  13. Zwart, G., Crump, B.C., Kamst-van Agterveld, M.P., Hagen, F., and Han, S.K. 2002. Typical freshwater bacteria: an analysis of available 16S rRNA gene sequences from plankton of lakes and rivers. Aquat. Microbiol. Ecol. 28, 141-155. https://doi.org/10.3354/ame028141