DOI QR코드

DOI QR Code

Effect of Cu-resistant Pseudomonas on growth and expression of stress-related genes of tomato plant under Cu stress

구리-오염 토양에서 토마토 식물의 생장과 스트레스-관련 유전자 발현에 미치는 구리-내성 Pseudomonas의 영향

  • Kim, Min-Ju (Department of Biological Sciences, Kangwon National University) ;
  • Song, Hong-Gyu (Department of Biological Sciences, Kangwon National University)
  • Received : 2017.09.25
  • Accepted : 2017.10.27
  • Published : 2017.12.31

Abstract

Pseudomonas veronii MS1 and P. migulae MS2 have several mechanisms of copper resistance and plant growth promoting capability, and also can alleviate abiotic stress in plant by hydrolysis of a precursor of stress ethylene, 1-aminocyclopropane-1-carboxylic acid (ACC) by ACC deaminase. In 4-week pot test for tomato growth in soil contained 700 mg/kg Cu, inoculation of MS1 and MS2 significantly increased root and shoot lengths, wet weight and dry weight of tomato plants compared to those of uninoculated control. The inoculated tomato plants contained less amounts of proline that can protect plants from abiotic stress, and malondialdehyde, an oxidative stress marker than those of control. ACC synthase genes, ACS4 and ACS6, and ACC oxidase genes, ACO1 and ACO4, both involved in ethylene synthesis, were strongly expressed in Cu stressed tomato, whereas significantly reduced in tomato inoculated with MS1 and MS2. Also, a gene encoding a metal binding protein metallothionein, MT2 showed similar expression pattern with above genes. All these results indicated that these rhizobacteria could confer Cu resistance to tomato plant under Cu stress and allowed a lower level of Cu stress and growth promotion.

Pseudomonas veronii MS1과 P. migulae MS2는 여러 가지의 구리-내성 및 식물 생장 촉진 방법을 갖고 있으며 또한 스트레스 에틸렌의 전구체인 1-aminocyclopropane-1-carboxylic acid (ACC)의 ACC deaminase에 의한 가수분해를 통해 식물에서 비생물적 스트레스를 완화시킬 수 있다. 구리 농도 700 mg/kg 토양에서의 4주간 소규모 토마토 재배 실험에서 MS1과 MS2 접종은 비접종 대조군에 비해 토마토 식물의 지상부와 뿌리 길이 및 습윤중량과 건조중량을 모두 유의성 있게 증가시켰다. 접종 토마토 식물은 비생물적 스트레스로부터 식물을 보호할 수 있는 proline및 산화 스트레스 지표인 malondialdehyde도 비접종 대조군보다 적게 함유하였다. 에틸렌 생합성에 관여하는 ACC synthase 유전자, ACS4와 ACS6 그리고 ACC oxidase 유전자, ACO1와 ACO4는 구리 스트레스를 받는 토마토에서 강하게 발현된 반면 MS1과 MS2 접종 토마토에서는 유의성 있게 감소했다. 또한 금속 결합 단백질인 metallothionein 암호화 유전자인 MT2도 위의 유전자들과 유사한 발현 양상을 보였다. 이 모든 결과들은 이 근권세균들이 구리 스트레스 하의 토마토 식물에 구리 내성을 부여하여 낮은 수준의 구리 스트레스와 생장 촉진을 허용하는 것을 가리킨다.

Keywords

References

  1. Ahsan, N., Lee, D.G., Lee, S.H., Kang, K.Y., Lee, J.J., Kim, P.J., Yoon, H.S., Kim, J.S., and Lee, B.H. 2007. Excess copper induced physiological and proteomic changes in germinating rice seeds. Chemosphere 67, 1182-1193. https://doi.org/10.1016/j.chemosphere.2006.10.075
  2. Bates, L.S., Waldren, R.P., and Teare, I.D. 1973. Rapid determination of free proline for water-stress studies. Plant Soil 39, 205-207. https://doi.org/10.1007/BF00018060
  3. Cervantes, C. and Gutierrez-Corona, F. 1994. Copper resistance mechanisms in bacteria and fungi. FEMS Microbiol. Rev. 14, 121-137.
  4. Chang, S.H., Lu, L.S., Wang, N.N., and Charng, Y.Y. 2008. Negative feedback regulation of system-1 ethylene production by the tomato 1-aminocyclopropane-1-carboxylate synthase 6 gene promoter. Plant Sci. 175, 149-160. https://doi.org/10.1016/j.plantsci.2007.11.004
  5. Chomczynski, P. and Sacchi, N. 2006. The single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction: twenty-something years on. Nat. Protoc. 1, 581-585. https://doi.org/10.1038/nprot.2006.83
  6. Dorling, S.J., Leung, S., Anderson, C.W., Albert, N.W., and McManus, M.T. 2011. Changes in 1-aminocyclopropane-1-carboxlate (ACC) oxidase expression and enzyme activity in response to excess manganese in white clover (Trifolium repens L.). Plant Physiol. Biochem. 49, 1013-1019. https://doi.org/10.1016/j.plaphy.2011.04.007
  7. Glick, B.R. 1995. The enhancement of plant growth by free-living bacteria. Can. J. Microbiol. 41, 109-117. https://doi.org/10.1139/m95-015
  8. Glick, B.R., Penrose, D.M., and Li, J. 1998. A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J. Theor. Biol. 190, 63-68. https://doi.org/10.1006/jtbi.1997.0532
  9. Goupil, P., Souguir, D., Ferjani, E., Faure, O., Hitmi, A., and Ledoigt, G. 2009. Expression of stress-related genes in tomato plants exposed to arsenic and chromium in nutrient solution. J. Plant Physiol. 166, 1446-1452. https://doi.org/10.1016/j.jplph.2009.01.015
  10. Hansda, A., Kumar, V., and Anshumali. 2017. Cu-resistant Kocuria sp. CRB15: a potential PGPR isolated from the dry tailing of Rakha copper mine. 3 Biotech. 7, 132.
  11. He, L.Y., Zhang, Y.F., Ma, H.Y., Su, L.N., Chen, Z.J., Wang, Q.Y., Qian, M., and Sheng, X.F. 2010. Characterization of copperresistant bacteria and assessment of bacterial communities in rhizosphere soils of copper-tolerant plants. Appl. Soil Ecol. 44, 49-55. https://doi.org/10.1016/j.apsoil.2009.09.004
  12. Hossain, M.A., Hoque, Md.A., Burritt, D., and Fujita, M. 2014. Proline protects plants against abiotic oxidative stress: Biochemical and molecular mechanisms, pp. 477-522. In Ahmad, P. (ed.), Oxidative damage to plants. Elsevier, San Diego, USA.
  13. Islam, F., Yasmeen, T., Ali, Q., Ali, S., Arif, M.S., Hussain, S., and Rizvi, H. 2014. Influence of Pseudomonas aeruginosa as PGPR on oxidative stress tolerance in wheat under Zn stress. Ecotoxicol. Environ. Safety 104, 285-293. https://doi.org/10.1016/j.ecoenv.2014.03.008
  14. Kim, M.J. and Song, H.G. 2017. Isolation of copper-resistant bacteria with plant growth promoting capability. Korean J. Microbiol. 55, 251-256.
  15. Mazhoudi, S., Chaoui, A., Ghorbal, M.H., and El Ferjani, E. 1997. Response of antioxidant enzymes to excess copper in tomato (Lycopersicon esculentum, Mill.). Plant Sci. 127, 129-137. https://doi.org/10.1016/S0168-9452(97)00116-7
  16. Morgan, P.W. and Drew, M.C. 1997. Ethylene and plant responses to stress. Physiol. Plant 100, 620-630. https://doi.org/10.1111/j.1399-3054.1997.tb03068.x
  17. Nakatsuka, A., Shiomi, S., Kubo, Y., and Inaba, A. 1997. Expression and internal feedback regulation of ACC synthase and ACC oxidase genes in ripening tomato fruit. Plant Cell Physiol. 38, 1103-1110. https://doi.org/10.1093/oxfordjournals.pcp.a029094
  18. Ouziad, F., Hildebrandt, U., Schmelzer, E., and Bothe, H. 2005. Differential gene expressions in arbuscular mycorrhizal-colonized tomato grown under heavy metal stress. J. Plant Physiol. 162, 634-649. https://doi.org/10.1016/j.jplph.2004.09.014
  19. Pandey, S., Ghosh P.K., Ghosh, S., De, T.K., and Maiti, T.K. 2013. Role of heavy metal resistant Ochrobactrum sp. and Bacillus spp. strains in bioremediation of a rice cultivar and their PGPR like activities. J. Microbiol. 51, 11-17. https://doi.org/10.1007/s12275-013-2330-7
  20. Seo, E.Y. and Song, H.G. 1994. Effects of diesel oil on the population and activity of soil microbial community. Korean J. Microbiol. 32, 163-171.
  21. Shinkle, J.R. and Briggs, W.R. 1984. Auxin concentration/growth relationship for Avena coleoptile sections from seedlings grown in complete darkness. Plant Physiol. 74, 335-339. https://doi.org/10.1104/pp.74.2.335
  22. Sun, L.N, Zhang, Y.F, He, L.Y, Chen, Z.J, Wang, Q.Y, Qian, M., and Sheng, X.F. 2010. Genetic diversity and characterization of heavy metal-resistant-endophytic bacteria from two coppertolerant plant species on copper mine wasteland. Bioresour. Technol. 101, 501-509. https://doi.org/10.1016/j.biortech.2009.08.011
  23. Tombuloglu, H., Semizoglu, N., Sakcali, S., and Kekec, G. 2012. Boron induced expression of some stress-related genes in tomato. Chemosphere 86, 433-438. https://doi.org/10.1016/j.chemosphere.2011.09.035
  24. Van Der Straeten, D., Anuntalabhochai, S., Van Caeneghem, W., Zhou, Z., Gielen, J., and Van Montagu, M. 1997. Expression of three members of the ACC synthase gene family in deepwater rice by submergence, wounding and hormonal treatments. Plant Sci. 124, 79-87. https://doi.org/10.1016/S0168-9452(97)04609-8
  25. Xia, Y., Qi, Y., Yuan, Y., Wang, G., Cui, J., Chen, Y., Zhang, H., and Shen, Z. 2012. Overexpression of Elsholtzia haichowensis metallothionein 1 (EhMT1) in tobacco plants enhances copper tolerance and accumulation in root cytoplasm and decreases hydrogen peroxide production. J. Hazard. Mater. 233, 65-71.
  26. Yim, W.J., Kim, K.Y., Lee, Y.W., Sundaram, S.P, Lee, Y., and Sa, T.M. 2014. Real time expression of ACC oxidase and PR-protein genes mediated by Methylobacterium spp. in tomato plants challenged with Xanthomonas campestris pv. vesicatoria. J. Plant Physiol. 171, 1064-1075. https://doi.org/10.1016/j.jplph.2014.03.009
  27. Yusuf, M., Hasan, S.A., Ali, B., Hayat, S., Fariduddin, Q., and Ahmad, A. 2008. Effect of salicylic acid on salinity‐induced changes in Brassica juncea. J. Integr. Plant Biol. 50, 1096-1102. https://doi.org/10.1111/j.1744-7909.2008.00697.x
  28. Zhou, J. and Goldsbrough, P.B. 1995. Structure, organization and expression of the metallothionein gene family in Arabidopsis. Mol. Gen. Genet. 248, 318-328. https://doi.org/10.1007/BF02191599
  29. Zouari, M., Ahmed, Ch., Zorrig, W., Elloumi, N., Rabhi, M., Delmail, D., Rouina, B., Labrousse, P., and Abdallah, F. 2016. Exogenous proline mediates alleviation of cadmium stress by promoting photosynthetic activity, water status and antioxidative enzymes activities of young date palm (Phoenix dactylifera L.). Ecotoxicol. Environ. Saf. 128, 100-108. https://doi.org/10.1016/j.ecoenv.2016.02.015