DOI QR코드

DOI QR Code

셀룰로스 나노크리스탈 복합화에 의한 Poly(vinyl alcohol-co-ethylene) 필름의 기체차단성 향상 효과

Cellulose Nanocrystal-Enhanced Poly(vinyl alcohol-co-ethylene) Barrier Film

  • 안홍주 (인하대학교 고분자공학과) ;
  • 최준호 (인하대학교 고분자공학과) ;
  • 조세연 (인하대학교 고분자공학과) ;
  • 곽효원 (인하대학교 고분자공학과) ;
  • 진형준 (인하대학교 고분자공학과)
  • An, Hong Joo (Department of Polymer Science and Engineering, Inha University) ;
  • Choe, Jun Ho (Department of Polymer Science and Engineering, Inha University) ;
  • Cho, Se Youn (Department of Polymer Science and Engineering, Inha University) ;
  • Kwak, Hyo Won (Department of Polymer Science and Engineering, Inha University) ;
  • Jin, Hyoung-Joon (Department of Polymer Science and Engineering, Inha University)
  • 투고 : 2017.09.30
  • 심사 : 2017.11.29
  • 발행 : 2017.12.31

초록

Barrier properties of packaging materials can be enhanced by controlling their microstructure and/or blending them with nanofillers such as cellulose nanocrystals (CNCs). CNCs have attracted considerable attention for use in reinforcing composite materials because of their exceptionally high specific strength and modulus, low density, chemical tunability, renewable nature, and relatively low cost. In this study, barrier films were prepared by incorporating CNCs into a poly(vinyl alcohol-co-ethylene) (EVOH) matrix. The CNCs prepared by acid hydrolysis of microcrystalline cellulose were ~348 nm long and 20 nm in diameter, with aspect ratios of 16. The nanocomposites were prepared by incorporating 1, 2, and 3 wt.% CNCs into an EVOH matrix using solution casting. Turbiscan analysis and contact angle measurements show that the EVOH/CNC composite films possessed interfacial interactions and good dispersion properties. As a result, these composite films may not show any decrease in their transparency. In particular, the oxygen transmission rate in the composite films significantly decreased from $3.2cm^3/(m^2{\cdot}day)$ to $1.3cm^3/(m^2{\cdot}day)$ when the CNC was added, indicating that the EVOH/CNC nanocomposite films can be used as barrier packaging materials.

키워드

과제정보

연구 과제 주관 기관 : 산업통상자원부

참고문헌

  1. H. K. Han and C.-Y. Park, "Functional Food Packaging Film", Polym. Sci. Technol., 2001, 12, 174-182.
  2. H.-M. Ng, L. T. Sin, S.-T. Bee, T.-T. Tee, and A. R. Rahmat, "Review of Nanocellulose Polymer Composite Characteristics and Challenges", Polym.-Plast. Technol. Eng., 2017, 56, 687-731. https://doi.org/10.1080/03602559.2016.1233277
  3. R. Auras, B. Harte, and S. Selke, "An Overview of Polylactides as Packaging Materials", Macromol. Biosci., 2004, 4, 835-864. https://doi.org/10.1002/mabi.200400043
  4. S. K. Cho and J.-H. Lee, "Trends of Gas Barrier Films via Roll to Roll Process", Polym. Sci. Technol., 2016, 27, 297-305.
  5. J. Lange and Y. Wyser, "Recent Innovations in Barrier Technologies for Plastic Packaging - A Review", Packag. Technol. Sci., 2003, 16, 149-158. https://doi.org/10.1002/pts.621
  6. I. Siro and D. Plackett, "Microfibrillated Cellulose and New Nanocomposite Materials: A Review", Cellulose, 2010, 17, 459-494. https://doi.org/10.1007/s10570-010-9405-y
  7. K. S. Miller and J. M. Krochta, "Oxygen and Aroma Barrier Properties of Edible Films: A Review", Trends in Food Sci. Technol., 1997, 8, 228-237. https://doi.org/10.1016/S0924-2244(97)01051-0
  8. A. Vassiliou, D. Bikiaris, K. Chrissafis, K. M. Paraskevopoulos, S. Y. Stavrev, and A. Docoslis, "Nanocomposites of Isotactic Polypropylene with Carbon Nanoparticles Exhibiting Enhanced Stiffness, Thermal Stability and Gas Barrier Properties", Compos. Sci. Technol., 2008, 68, 933-943. https://doi.org/10.1016/j.compscitech.2007.08.019
  9. X. Yang, Y. Zhang, Y. Xu, S. Gao, and S. Guo, "Effect of Octadecylamine Modified Graphene on Thermal Stability, Mechanical Properties, and Gas Barrier Properties of Brominated Butyl Rubber", Macromol. Res., 2017, 25, 270-275. https://doi.org/10.1007/s13233-017-5035-7
  10. P.-G. Ren, H. Wang, D.-X. Yan, H.-D. Huang, H.-B. Wang, Z.-P. Zhang, X. Ling, and Z.-M. Li, "Ultrahigh Gas Barrier Poly(vinyl alcohol) Nanocomposite Film Filled with Congregated and Oriented $Fe_3O_4$@GO Sheets Induced by Magnetic-field", Compos. Pt. A-Appl. Sci. Manuf., 2017, 97, 1-9. https://doi.org/10.1016/j.compositesa.2017.02.026
  11. Y. Cui, S. Kumar, B. R. Kona, and D. van Houcke, "Gas Barrier Properties of Polymer/Clay Nanocomposites", RSC Adv., 2015, 5, 63669-63690. https://doi.org/10.1039/C5RA10333A
  12. S. Maisanaba, S. Pichardo, M. Puerto, D. Gutierrez-Praena, A. M. Camean, and A. Jos, "Toxicological Evaluation of Clay Minerals and Derived Nanocomposites: A Review", Environ. Res., 2015, 138, 233-254. https://doi.org/10.1016/j.envres.2014.12.024
  13. M. Kryuchkova, A. Danilushkina, Y. Lvov, and R. Fakhrullin, "Evaluation of Toxicity of Nanoclays and Graphene Oxide in Vivo: A Paramecium Caudatum Study", Environ. Sci. Nano, 2016, 3, 442-452. https://doi.org/10.1039/C5EN00201J
  14. T. Lu, M. Jiang, Z. Jiang, D. Hui, Z. Wang, and Z. Zhou, "Effect of Surface Modification of Bamboo Cellulose Fibers on Mechanical Properties of Cellulose/Epoxy Composites", Compos. Pt. B-Eng., 2013, 51, 28-34. https://doi.org/10.1016/j.compositesb.2013.02.031
  15. A. N. Fernandes, L. H. Thomas, C. M. Altaner, P. Callow, V. T. Forsyth, D. C. Apperley, C. J. Kennedy, and M. C. Jarvis, "Nanostructure of Cellulose Microfibrils in Spruce Wood", Proc. Natl. Acad. Sci., 2011, 108, E1195-E1203. https://doi.org/10.1073/pnas.1108942108
  16. M. K. M. Haafiz, A. Hassan, Z. Zakaria, and I. M. Inuwa, "Isolation and Characterization of Cellulose Nanowhiskers from Oilpalm Biomass Microcrystalline Cellulose", Carbohydr. Polym., 2014, 103, 119-125. https://doi.org/10.1016/j.carbpol.2013.11.055
  17. I. Reiniati, A. N. Hrymak, and A. Margaritis, "Recent Developments in the Production and Applications of Bacterial Cellulose Fibers and Nanocrystals", Crit. Rev. Biotechnol., 2017, 37, 510-524. https://doi.org/10.1080/07388551.2016.1189871
  18. A. Hirai, O. Inui, F. Horii, and M. Tsuji, "Phase Separation Behavior in Aqueous Suspensions of Bacterial Cellulose Nanocrystals Prepared by Sulfuric Acid Treatment", Langmuir, 2009, 25, 497-502. https://doi.org/10.1021/la802947m
  19. J. Araki, M. Wada, S. Kuga, and T. Okano, "Flow Properties of Microcrystalline Cellulose Suspension Prepared by Acid Treatment of Native Cellulose", Colloid Surf. A-Physicochem. Eng. Asp., 1998, 142, 75-82. https://doi.org/10.1016/S0927-7757(98)00404-X
  20. J. A. Lee, M. J. Yoon, K. -Y. Kim, and D. Y. Lim, "Structure and Mechanical Properties of Thermoplastic Composites Using Microcrystalline Cellulose Nanofibers", Text. Sci. Eng., 2013, 50, 386-392. https://doi.org/10.12772/TSE.2013.50.386
  21. H. E. Cho, Y. Song, and H. Kim, "Physical Properties of Cellulose Acetate Reinforced by Cellulose Nanowhisker", Text. Sci. Eng., 2014, 51, 299-305. https://doi.org/10.12772/TSE.2014.51.299
  22. M. P. Paula, T. M. Lacerda, and E. Frollini, "Sisal Cellulose Acetates Obtained from Heterogeneous Reactions", Express Polym. Lett., 2008, 2, 423-428. https://doi.org/10.3144/expresspolymlett.2008.51
  23. O. J. Yoon, "Thermal Characteristics of Polyethylene Oxide and Functionalized Bacterial Cellulose Whisker Nanoparticle Composite Nanofibers", Macromol. Res., 2016, 24, 973-979. https://doi.org/10.1007/s13233-016-4137-y
  24. N. S. Lani, N. Ngadi, A. Johari, and M. Jusoh, "Isolation, Characterization, and Application of Nanocellulose from Oil Palm Empty Fruit Bunch Fiber as Nanocomposites", J. Nanomater., 2014, 2014, 1-9.
  25. S. H. Lee, S. Y. Lee, J. D. Nam, and Y. Lee, "Preparation of Cellulose Diacetate/Ramie Fiber Biocomposites by Melt Processing", Polym.-Korea, 2006, 30, 70-74.
  26. S. Y. Jang and D. S. Kim, "Preparation and Physical Properties of Polypropylene/Cellulose Composite", Polym.-Korea, 2014, 39, 130-135.
  27. A. Wang, C. Xu, C. Zhang, Y. Gan, and B. Wang, "Experimental Investigation of the Properties of Electrospun Nanofibers for Potential Medical Application", J. Nanomater., 2015, 2015, 1-8.
  28. J. H. Ryu and H. J. Youn, "Effect of Sulfuric Acid Hydrolysis Condition on Yield, Particle Size and Surface Charge of Cellulose Nanocrystals", J. Korea TAPPI, 2011, 43, 67-74.
  29. F. Fahma, S. Iwamoto, N. Hori, T. Iwata, and A. Takemura, "Effect of Pre-acid-hydrolysis Treatment on Morphology and Properties of Cellulose Nanowhiskers from Coconut Husk", Cellulose, 2011, 18, 443-450. https://doi.org/10.1007/s10570-010-9480-0
  30. X. M. Dong, J. -F. Revol, and D. G. Gray, "Effect of Microcrystallite Preparation Conditions on the Formation of Colloid Crystals of Cellulose", Cellulose, 1998, 5, 19-32. https://doi.org/10.1023/A:1009260511939
  31. S. Park, J. O. Baker, M. E. Himmel, P. A. Parilla, and D. K. Johnson, "Cellulose Crystallinity Index: Measurement Techniques and Their Impact on Interpreting Cellulase Performance", Biotechnol. Biofuels, 2010, 3, 1-10. https://doi.org/10.1186/1754-6834-3-1
  32. J. Araki, M. Wada, S. Kuga, and T. Okano, "Flow Properties of Microcrystalline Cellulose Suspension Prepared by Acid Treatment of Native Cellulose", Colloid Surf. A-Physicochem. Eng. Asp., 1998, 142, 75-82. https://doi.org/10.1016/S0927-7757(98)00404-X
  33. E. Fortunati, D. Puglia, M. Monti, C. Santulli, M. Maniruzzaman, and J. M. Kenny, "Cellulose Nanocrystals Extracted from Okra Fibers in PVA Nanocomposites", J. Appl. Polym. Sci., 2013, 128, 3220-3230. https://doi.org/10.1002/app.38524
  34. E. H. Qua, P. R. Hornsby, H. S. Sharma, G. Lyons, and R. D. McCall, "Preparation and Characterization of Poly(vinyl alcohol) Nanocomposites Made from Cellulose Nanofibers", J. Appl. Polym. Sci., 2009, 113, 2238-2247. https://doi.org/10.1002/app.30116
  35. M. S. Lee and N. J. Jo, "Abrasion-Resistance and Optical Properties of Sol-Gel Derived Organic-Inorganic Hybrid Coatings", J. Korean Ind. Eng. Chem., 2001, 12, 643-648.
  36. A. Vejdan, S. M. Ojagh, A. Adeli, and M. Abdollahi, "Effect of $TiO_2$ Nanoparticles on the Physico-mechanical and Ultraviolet Light Barrier Properties of Fish Gelatin/Agar Bilayer Film", LWT-Food Sci. Technol., 2016, 71, 88-95. https://doi.org/10.1016/j.lwt.2016.03.011
  37. Z. Yu, F. K. Alsammarraie, F. X. Nayigiziki, W. Wang, B. Vardhanabhuti, A. Mustapha, and M. Lin, "Effect and Mechanism of Cellulose Nanofibrils on the Active Functions of Biopolymer-based Nanocomposite Films", Food Res. Int., 2017, 99, 166-172. https://doi.org/10.1016/j.foodres.2017.05.009
  38. K. K. Mokwena and J. Tang, "Ethylene Vinyl Alcohol: A Review of Barrier Properties for Packaging Shelf Stable Foods", Crit. Rev. Food Sci. Nutr., 2012, 52, 640-650. https://doi.org/10.1080/10408398.2010.504903