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Abstract
A common interest in gene expression data analysis is to identify genes that present significant changes in

expression levels among biological experimental conditions. In this paper, we develop a Bayesian approach to
make a gene-by-gene comparison in the case with a control and more than one treatment experimental condition.
The proposed approach is within a Bayesian framework with a Dirichlet process prior. The comparison procedure
is based on a model selection procedure developed using the discreteness of the Dirichlet process and its repre-
sentation via Polya urn scheme. The posterior probabilities for models considered are calculated using a Gibbs
sampling algorithm. A numerical simulation study is conducted to understand and compare the performance of
the proposed method in relation to usual methods based on analysis of variance (ANOVA) followed by a Tukey
test. The comparison among methods is made in terms of a true positive rate and false discovery rate. We find
that proposed method outperforms the other methods based on ANOVA followed by a Tukey test. We also apply
the methodologies to a publicly available data set on Plasmodium falciparum protein.

Keywords: gene expression, Bayesian approach, prior Dirichlet process, Polya urn scheme,
Gibbs sampling

1. Introduction

DNA array technology is capable of providing simultaneous gene expression level measurements for
thousands of genes under different biological experimental conditions. Once the expression levels
have been obtained one of the objectives is to identify genes that present significant changes in the ex-
pression levels among experimental conditions. The identification of these genes is important because
it may bring to reveal new biological discoveries such as which genes are involved in the origin and/or
evolution of some genetic disease or which genes react to a drug stimulus. For further discussion and
additional references on DNA array technology, see DeRisi et al. (1997), Arfin et al. (2000), Wu
(2001), Hatfield et al. (2003), and their references.

According to Baldi and Long (2001) the first level of gene expression data analysis is the identi-
fication of the genes with expression levels different in a treatment condition in relation to a control
condition. For this case, the usual methods used to identify differentially expressed genes are based
on t-tests such as usual t-test for unequal variances, the Cyber-t (CT) proposed by Baldi and Long
(2001) and the Bayesian t-test (BTT) proposed by Fox and Dimmic (2006). CT, and BTT modify
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the standard error estimate of the two-sample differences found in the denominator of the standard
t-statistic. Under the Bayesian approach, Oh and Yang (2006) developed a two-sample comparison
considering a multiple test scenery. The authors assume a conditionally prior distribution for each
pair of comparing means. In order to estimate parameters of interest from posterior distribution the
authors propose an importance sampling method. But, in situations with a control and more than one
treatment, remains common to apply analysis of variance (ANOVA) followed by a Tukey test to iden-
tify which treatment caused the difference; see for example Pavlidis (2003), Parkitna et al. (2006),
and Goeman and Bühlmann (2007).

In this paper, we consider gene expression data analysis from experimental conditions with a
control and more than one treatment. We model each one of the hypothesis of equality or inequality
among experimental conditions by a model. In this way our interest is to search for a model which
best fits the data and meets conditions of inequality among the experimental conditions. We use a
hierarchical Bayesian approach in order to select one of the models considered. This approach uses
the Dirichlet process prior and its representation via Polya urn scheme (Blackwell and MacQueen,
1973). The advantage of using the Dirichlet process prior is its discreteness that allows the parameters
to be coincident with positive probability. To calculate the posterior probability for each model we
implement a Gibbs sampling (GS) algorithm considering the Polya urn scheme written through latent
variables.

We develop a simulation study to verify the performance of the proposed method and compare it
with the usual method based on ANOVA followed by Tukey test. The simulation study was imple-
mented considering the cases with a control and two- and three- treatment experimental conditions.
The ANOVA is applied to identify genes which show a significant difference among experimental
conditions. ANOVA does not identify which experimental conditions show the difference; therefore,
we also apply the Tukey test as a post-hoc test to identify which experimental conditions show sig-
nificant difference, see for example Pavlidis (2003), Parkitna et al. (2006), Goeman and Bühlmann
(2007), and Zollanvari et al. (2009). As comparison criterion between methods we consider the true
positive rate (TPR) and false discovery rate (FDR).

The simulation results show a better performance of the proposed method. We also apply both
methods to a real data set downloaded from http://cybert.ics.uci.edu/anova that concerns a proteomics
experiment (Baldi and Long, 2001).

The pioneering paper using the Dirichlet process prior for multiple-comparison was by Gopalan
and Berry (1998). The paper considers a hierarchical Bayesian approach with the Dirichlet process
prior and develop a GS algorithm to make a comparison among various hypotheses. The posterior
probability for the hypotheses are estimated using the Rao-Blackwellization method proposed by
Gelfand and Smith (1990). Guindani et al. (2009) recently developed a semi-parametric Bayesian
model with the Dirichlet process prior for multiple-comparison problems. Guindani et al. (2009)
consider a loss function based on positive and false positive counts to proposes a decision rule that is
based on a threshold of the posterior probability. Zou et al. (2010) consider a two-sample comparison
and model the t-statistics using a hierarchical Bayesian approach with a Dirichlet process prior on the
non-centrality parameter. Estimates for parameters of interest and false discovery rate are estimated
via a GS algorithm. The distinction among the previous approaches and ours is that here the Dirichlet
process is used jointly with a model selection procedure to identify the cases differentially expressed.
The discreteness of the Dirichlet process is used to identify equality (or not) among parameters of the
models considered. In this way, the procedure allow the source for a model that best fits the data and
the identification of cases with difference in relation to mean e/or variance.

The remainder of the paper is structured as follows. In Section 2, we describe the Bayesian model
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for gene expression data analysis and the Polya urn scheme using latent variables. In Section 3, we
compare the performance of the proposed method with the usual approach. In Section 4, both methods
are applied to a real dataset. Section 5 concludes the paper with final remarks.

2. Hierarchical Bayesian model

Consider a DNA array experiment with N genes performed for experimental conditions E1, . . . , ET ,
where E1 represent the control experimental condition, E2 represent the first treatment experimental
condition and successively until the last one treatment experimental condition ET . Suppose that each
one of experimental conditions are replicated n times. Denote by yigt the ith observed expression level
for gene g in experimental condition t ∈ {1, . . . , T }, for i = 1, . . . , n and g = 1, . . . ,N.

We omit the index g in the next expressions in order to simplify the notation hereafter. Thus, let
Y = {Y1, . . . ,YT } be the set of all observed expression levels for gene g in T experimental conditions,
where Yt = (y1t, y2t, . . . , ynt)′ is a n× 1 vector of conditionally independent observations for gene g on
treatment t, for g = 1, . . . ,N and t = 1, . . . ,T .

As is usual in gene expression data analysis, consider that the logarithm of the observed gene
expression levels in control and treatment conditions are generated from normal distributions with
mean µt and variance σ2

t , Yit ∼ N(µt, σ
2
t ), for i = 1, . . . , n and t = 1, . . . ,T . See for example, Baldi

and Long (2001), Fox and Dimmic (2006), Kim et al. (2013), Saraiva and Milan (2012), Louzada et
al. (2014), and Oh (2015), among others.

Denote parameters of the experimental condition t by θt = (µt, σ
2
t ) and let Θ = {θ = (θ1, . . . , θT );

θt ∈ R × R+} be the parametric space, for t = 1, . . . ,T . The likelihood function for θ given y is given
by

L(θ|y) =
T∏

t=1

n∏
i=1

f (yi|θt) ∝
T∏

t=1

(
σ2

t

)− n
2 exp

− 1
2σ2

t

n∑
i=1

(yit − µt)2

 ,
where f (yi|θt) is the probability density function of the normal distribution with parameters θt =

(µt, σ
2
t ), for t = 1, . . . ,T .

Our interest is to verify whether a gene g is differentially expressed among the different experi-
mental conditions, i.e., if θt = θ j or θt , θ j, for all t, j = 1, . . . , T and t , j. This equality or inequality
between θt and θ j can be represented by the following models:

M0 : θ1 = θ2 = · · · = · · · = θT ,

M1 : θ1 , θ2, θ1 = θ3 = · · · = θT ,

M2 : θ1 , θ3, θ1 = θ2 = θ4 = · · · = θT ,

successively for all combinations of inequality 2 to 2, 3 to 3, . . . , until the last one model

MQ : θ1 , θ2 , · · · , θT .

In this way our interest is to search for a model which best fits the data and meets conditions
defined by models Mq, q = 0, 1, . . . ,Q. For each model Mq, the equality or inequality among θt’s
determine a particularly partition on parameter space Θ, for t ∈ {1, . . . ,T }. This then allow us to
use a hierarchical Bayesian approach with the Dirichlet process prior on θ = (θ1, . . . , θT ) in order to
make simultaneous comparisons among θt’s. This is possible due the discreteness of the Dirichlet
process that allows parameters from distinct experimental conditions to be coincident with positive
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probability. For more details on discreteness of the Dirichlet process see Gopalan and Berry (1998),
Neal (1998), and references.

Thus, consider the following hierarchical Bayesian model with the Dirichlet process prior

Yt | θt =
(
µt, σ

2
t

)
∼ N

(
µt, σ

2
t

)
(2.1)

θt | G ∼ G

G | α,G0 ∼ DP(αG0),

for t = 1, . . . ,T , where G is a unknown distribution function with a prior distribution given by a
Dirichlet process with concentration parameter α and baseline distribution G0 (Antoniak, 1974; Fer-
guson, 1973). The model (2.1) is denominated in the literature by Dirichlet process mixture model
(DPMM).

In order to complete the specification of the model (2.1) we fix α = 1, as done by Escobar and
West (1995), Medvedovic and Sivaganesan (2002), and Jain and Neal (2004). Besides, in order to
explore the complete conjugacy of the model we set up G0 as

G0 ≡ N
(
µ0,

σ2
t

λ

)
IG

(
τ

2
,
β

2

)
,

where µ0, λ, α, and β are known hyperparameters and IG(·) represents the inverse gamma distribution
in a parametrization so that the expected value is β/(τ− 2). The choice of the hyperparameters values
will generally depend upon the application at hand. At this moment, we leave them unspecified.

Using the result of Blackwell and MacQueen (1973), we have that integrating G over its prior
distribution in model (2.1) θ follows the Polya urn scheme and can be written as

θ1 ∼ G0 (2.2)

θt |θ1, . . . , θt−1 ∼
α

α + t − 1
G0 +

1
α + t − 1

t−1∑
j=1

Iθt (θ j), (2.3)

where Iθt (θ j) = 1 if θt = θ j and Iθt (θ j) = 0 otherwise, for t = 1, . . . , T .
Note that, at each step of the sample procedure defined by (2.3), θt may assume a new value

generated from baseline distribution G0 with probability α/(α + t − 1) or may assume the value of
one of previous θ j’s with probability {1/(α + t − 1)}∑t−1

j=0Iθt (θ j). Thus, a sample from joint distribution
of θ1, . . . , θT yields k groups (1 ≤ k ≤ T ) of θt’s with distinct values ϕ1, . . . , ϕk generated from baseline
distribution G0. Using this fact we proposed a MCMC procedure to estimate the posterior probabilities
for models Mq through the Polya urn scheme, given by expressions (2.2) and (2.3), written in terms
of latent indicator variables, for q = 1, . . . ,Q.

2.1. Polya urn scheme via latent variables

Let c = (c1 . . . , cT ) be a vector of latent indicator variables, so that, ct = j if θt = ϕ j, for t = 1, . . . , T
and j = 1, . . . , k. Consider D j = {yt; ct = j} be the cluster (set) of observations with identical
configuration indicators ct, where D1, . . . ,Dk are paired with ϕ1, . . . , ϕk, respectively, for t = 1, . . . , T .

Assume that clusters are numbered consecutively as they arise; therefore, the sampling procedure
defined by (2.2) and (2.3) can be replicated by the following procedure:

(i) Set c1 = 1, D1 = {y1} and generate ϕ1 ∼ G0;
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(ii) for t = 2, . . . ,T calculate the probabilities

P (ct = j|c1, . . . , ct−1) =
n j

α + t − 1
and P (ct = j∗|c1, . . . , ct−1) =

α

α + t − 1
, (2.4)

for j = 1, . . . , k(t), j∗ = k(t)+1, where k(t) is the number of different values in ct−1 = (c1, . . . , ct−1)
and n j is the number of ct′ = j in ct−1, for t′ = 1, . . . , t − 1 and j = 1, . . . , k(t).

(ii-a) Generate Zt ∼ Multinom(1,Pt), where Pt =
(
P(ct = 1| · ), . . . , P(ct = k(t)| · ), P(ct = j∗| · ))

and Multinom(1,Pt) is the multinomial distribution with k(t) + 1 modalities and a single
observation;

(ii-b) If Zt j = 1, for some j ∈ {1, . . . , k(t)}, then do ct = j, D j = {D j} ∪ {yt} and n j = n j + 1;

(ii-c) If Zt j∗ = 1, then do ct = j∗, D j∗ = {yt}, n j∗ = 1 and generate ϕ j∗ ∼ G0.

(iii) Given c, set θt = ϕ j for all ct = j, t = 1, . . . ,T and j = 1, . . . , k.

Note from this procedure, that D1 is the set composite by the Treatments conditions that do not
have difference in relation to control experimental condition.

As a sample from a Dirichlet process is exchangeable (Antoniak, 1974; Jain and Neal, 2004;
MacEachern, 2016), so from (2.4) we have conditional probabilities given by

P(Ct = j|c−t) =
n j,−t

α + T − 1
and P(Ct = j∗|c−t) =

α

α + T − 1
,

where c−t = (c1, . . . , ct−1, ct+1, . . . , cT ) and n j,−t is the number of ct = j in c−t, for j = 1, . . . , k(t). Here,
k(t) is the number of different values in configuration c−t. The ϕ j’s remains drawn independently from
baseline distribution G0.

Using the Bayes rule, the conditional posterior probabilities for latent indicator variable are given
by

P(Ct = j|c−t, yt, ϕ j) = bt
n j,−t

α + T − 1
f (yt |ϕ j) and P(Ct = j∗|c−t, yt) = bt

α

α + T − 1
q(yt), (2.5)

where bt is the appropriate normalizing constant for those probabilities sum to one, f (yt |ϕ j) is the
joint probability for yt given ϕ j and

q(yt) =
∫

f
(
yt |ϕ j∗

)
πG0

(
ϕ j∗

)
dϕ j∗ = β

∗λ∗Γ∗

1 +
∑

ym∈D j
y2

m + λµ
2
0

β
−

(∑
ym∈D j

ym + λµ0

)2

β(n j + λ)


−τ∗

,

in which,

β∗ =

(
1
βπ

) n j
2

, λ∗ =

(
λ

n j + λ

) 1
2

, Γ∗ =
Γ
(
τ+n j

2

)
Γ
(
τ
2

) and τ∗ =
(τ + n j

2

)
,

for t = 0, 1, . . . , T .
Given a configuration c, the full conditionals for µ j and σ−2

j are, respectively,

µ j|σ2
j , λ, y ∼ N

 n j

n j + λ
y j +

λ

n j + λ
µ0,

σ2
j

n j + λ

 (2.6)
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and

σ−2
j |α, β, y ∼ IG

α + n j + 1
2

, β + (n j − 1)s2
j +

n jλ
(
y j − µ0

)2

n j + λ

 , (2.7)

where y j and s2
j are the sample mean and variance, respectively, of the cluster D j, for j = 1, . . . , k.

2.1.1. Gibbs sampling algorithm

In order to estimate the posterior probabilities for models Mq we use a GS algorithm by iterating
between aligns (2.5)–(2.7).

• Gibbs sampling algorithm: Let the current state of the Markov chain consist of (c(l−1),ϕ(l−1)),
where l is the lth iteration of the algorithm, for l = 1, . . . , L, where c(0) = (c(0)

0 , c(0)
1 , . . . , c(0)

T ) and
ϕ(0) = (ϕ(0)

1 , . . . , ϕ(0)
k ) are the initial values. So, do the following:

(1) For t = 1, . . . , T :

(a) Calculate Pt = (P(ct = 1| · ), . . . , P(ct = k(t)| · ), P(ct = j∗| · )) as in (2.5);

(b) Generate Zt ∼ Multinom(1,Pt). If zt, j = 1, for some j ∈ {1, . . . , k(t)}, do c(l)
t = j. Otherwise,

if z j,k(t)+1 = 1, do c(l)
t = k(t) + 1;

(2) Conditional on c(l) update parameters ϕ j from posterior distribution in (2.6) and (2.7);

(3) Let I(l)q be an indicator variable, so that, I(l)q = 1 if configuration c(l) defines model Mq; and
Iq = 0 otherwise, for q = 0, 1, . . . ,Q.

We discard the first B values of the generated chains as a burn in. The posterior estimates for
probabilities of models Mq are given by

P̃q =
1

L − B

L−B∑
l=B+1

I
(l)
q ,

for q = 0, 1, . . . ,Q. If Pq = max1≤q′≤Q Pq′ , then Mq is the selected model, for q ∈ {1, . . . ,Q}.

3. Data analysis

In this section we verify performance of the proposed method called Polya urn within Gibbs sampling
(PUGS) and compare it with a standard method based on ANOVA followed by Tukey test (ATUK)
using simulated data sets and a real data set.

In order to establish the hyperparameters values for the PUGS we consider the following proce-
dure. Let (a, b) be the roughly interval which would include all observations produced by the experi-
ment. Then, the hyperparameter µ0 was chosen to be the middle point of the interval µ0 = (a + b)/2
and we set up λ = 0.1. Besides, we choose τ and β in a way that E[σ2

t ] = β/(τ − 2) = R, where R is
the range of the interval R = b − a. Thus, we obtain β = (τ − 2)R and we set τ = 3. For ATUK we
consider a significance level at 0.05.



Identifying differentially expressed genes using the Polya urn scheme 633

3.1. Simulated data set

Consider a DNA experiment with a control and two experimental conditions. The five possible models
written in terms of latent variables are:

M1 : c1 = (c1 = c2 , c3);
M2 : c2 = (c1 = c3 , c2);
M3 : c3 = (c1 , c2 = c3);
M4 : c4 = (c1 , c2 , c3). (3.1)

In order to generate the data sets, we fix control parameters as µ0 = 8.44 and σ2
0 = 0.67. These

values are the average of the observed expression levels in control experiment carried through with
the proteomics data set (Baldi and Long, 2001). The parameters values for each configuration are
given by

- (µ3, σ3) = (µ2, σ2) = (µ1, σ1) for c0;

- (µ2, σ2) = (µ1, σ1) and (µ3, σ3) = (µ1 + δσ1, γσ1) for c1;

- (µ3, σ3) = (µ1, σ1) and (µ2, σ2) = (µ1 + δσ1, γσ1) for c2;

- (µ2, σ2) = (µ1 + δσ1, γσ1) and (µ3, σ3) = (µ2, σ2) for c3;

- (µ2, σ2) = (µ1 + δσ1, γσ1) and (µ3, σ3) = (µ2 + δσ2, γσ2) for c4,

for δ ∈ {0.50, 1.00, 1.50, 2.00, 2.50, 3.00, 3.50, 4.00} and γ ∈ {0.5, 1.0, 1.5, 2.0, 2.5, 3.0}. We consider
the proportion of cases generated from each model are (0.70, 0.10, 0.10, 0.05, 0.05) for (M0,M1,M2,M3,
M4), respectively. Besides, we set up n = 5 and N = 1, 000.

The generation of a simulated data set is given by the following steps. For g = 1, . . . ,N, generate
Ug from a uniform distribution on interval (0, 1), Ug ∼ U(0, 1), and consider Gg an indicator vector
of dimension 1 × 3 that record from which model data are generated from:

(i) If ug ≤ 0.70, fix parameters values according to c0. Let the index vector Gg = (1, 1, 1) to indicate
that case g is generated from M0;

(ii) If 0.70 < ug ≤ 0.80, fix parameters values according to c1 and set Gg = (1, 1, 2);

(iii) If 0.80 < ug ≤ 0.90, fix parameters values according to c2 and set Gg = (1, 2, 1);

(iv) If 0.90 < ug ≤ 0.95, fix parameters values according to c3 and set Gg = (1, 2, 2);

(v) If ug > 0.95, fix parameters values according to c4 and set Gg = (1, 2, 3);

(vi) Generate Yit ∼ N(µt, σ
2
t ), for t = 1, 2, 3 and i = 1, . . . , n.

Generated the data set, we apply PUGS and ATUK to identify the cases with a difference. We
apply the PUGS fixing L = 33,000 iterations and burn-in B = 3,000; in addition, Besides, out of
30,000 iterations, we consider jumps of size 10, i.e., only 1 draw from every 10 was kept, in order to
construct a sample of size of 3,000 to make inferences.

To record the configuration obtained by the PUGS and the ATUK, we consider the index vector
Zmethod

g , where Zmethod
g assume one of the following configurations: (1, 1, 1), (1, 1, 2), (1, 2, 1), (1, 2, 2)
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or (1, 2, 3), for method = {PUGS,ATUK}. So, we compare performance of the methods by using
the TPR (number of models correctly identified divided by N) and the FDR (number of models M0
incorrectly selected divided by the number of rejected models M0) given by

TPR =

∑n
g=1 IZmethod

g
(Gg)

N
, (3.2)

where IZmethod
g

(Gg) = 1 if configuration identified by the method is equal to Gg and IZmethod
g

(Gg) = 0
otherwise, and

FDR =

∑n
g=1

(
1 − IZmethod

g
(Gg)

)
· IGg (Z0)

N −∑n
g=1 IZmethod

g
(Z0)

, (3.3)

where IGg (Z0) = 1 if case g (Gg) is generate according to configuration Z0 of the null model M0 and
IGg (Z0) = 0 otherwise, for method = {PUGS,ATUK};

Moreover, for each pair (δ, γ) considered, we generate L = 100 different artificial data sets accord-
ing to steps (i) to (vi) described above and present results using the mean of the TPR and FDR,

TPR =
1
L

L∑
l=1

TPR(l) and FDR =
1
L

L∑
l=1

FDR(l),

where TPR(l) and FDR(l) is the TPR and FDR calculated for lth generated data set, respectively.
Figure 1 show the TPR and FDR for both methods. Note that, PUGS present better performance

than ATUK for all simulated cases, i.e., PUGS has higher TPR and smaller FDR. These results mean
that PUGS has a better performance in correctly classified the cases; and the errors are smaller than
the ATUK method. Particularly, this better performance occurs for cases with differences in variances,
γ = 2 and γ = 3, as can be viewed in Figures 1(b), (c), (e), (f). This fact is especially interesting from
the biological point of view because PUGS may show cases identified when the usual method ATUK
is considered.

As in application presented in the next Section no case was identified under model M4, so we
present a simulation study in Appendix A similar to the presented case above, but considering only
the configurations c j, j = 0, 1, 2, 3, from (3.1). In the Appendix B we present a simulation study
conducted for a situation with a control and three treatment experimental conditions. Analogously to
the results describe in this section, PUGS also present better performance than ATUK, specially for
cases with difference in variances.

4. Application

Now consider the proteomics data set mentioned in the introduction. This dataset was extracted from
the website cybert.ics.uci.edu/anova/. The data set is composed by N = 1,088 proteins from a control
and two treatment conditions. The sample size from each experimental condition is n = 5.

For application of the PUGS we consider the same number of iteration, burn-in and hyperparam-
eters values used in the simulation section. Table 1 shows the number of cases identified under each
model by method. The last column of this table shows the number of cases in which model M0 was
not selected, i.e., the number of cases with difference identified by each method.

ATUK identify 140 case with evidence for difference while PUGS identify 127. Out of case
identified with difference, 92 were identified by both methods. No cases were identified under M4 in
either method.
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Figure 1: Average of TPR and FDR for PUGS and ATUK. TPR = number of models correctly identified divided
by N; FDR = number of models M0 incorrectly selected divided by the number of rejected models M0; ATUK =

analysis of variance followed by Tukey test; PUGS = Polya urn within Gibbs sampling.

Table 1: Number of cases identified by method

Method Model Total of cases with
M0 M1 M2 M3 M4 difference

PUGS 961 21 89 17 0 127
ATUK 948 46 27 67 0 140

PUGS = Polya urn within Gibbs sampling; ATUK = analysis of variance followed by Tukey test.

Tables 2 and 3 show the ten most evident cases identified by PUGS and ATUK, respectively. These
tables show the number of the protein in the dataset, the sample mean and the standard deviation
(SD) for control and two treatments, the configuration identified by PUGS and ATUK, the posterior
probability obtained by PUGS and the p-value from ANOVA in ATUK.

The 10 most evident cases identified by ATUK were also identified by PUGS. Out of the 10 most
evident cases identified with difference by PUGS, two were not identified by ATUK. These both cases
are highlighted with ∗ in Table 2. Note that these both cases have higher differences in control SD
(highlighted in bold) in relation to treatment SDs. As in the simulation study, this result indicates that
PUGS has ability to identify cases not identified by the usual method ATUK if the difference is in
variances.

5. Final remarks

In this paper, we develop a gene-by-gene multiple comparison analysis using a semi-parametric
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Table 2: Ten most evident cases identified by PUGS, where c j is given in (3.1), j = 0, . . . , 4

Number Sample mean Sample standard deviation Configuration Posterior p-valuey1 y2 y3 s1 s2 s3 PUGS ATUK probability
557∗ 6.0579 9.0897 8.7857 3.5739 0.9594 0.6304 c3 c0 0.8938 0.0897
690 8.0427 9.5514 9.3821 0.5140 0.3500 0.3832 c3 c3 0.8854 0.0002
526∗ 8.8327 8.1400 8.7649 0.9355 4.6101 0.5055 c2 c0 0.8682 0.9076
666 8.2380 9.7643 8.5284 0.4457 0.4276 0.4502 c2 c2 0.8331 0.0003

1069 7.3039 8.8703 7.3194 0.6188 1.0238 0.3377 c2 c2 0.8248 0.0065
1024 8.3471 9.6321 8.3603 0.4866 0.5582 0.4792 c2 c2 0.8105 0.0023
936 7.5842 8.8570 7.8247 0.3111 0.7440 0.3207 c2 c2 0.7926 0.0039
932 8.1317 9.7893 8.4973 0.5588 0.3725 0.5818 c2 c2 0.7925 0.0006
730 8.3837 9.6405 8.1156 0.5543 0.3864 0.6852 c2 c2 0.7637 0.0021

1012 8.0056 9.1393 8.0072 0.4247 0.4005 0.4868 c2 c2 0.7633 0.0019

PUGS = Polya urn within Gibbs sampling; ATUK = analysis of variance followed by Tukey test.

Table 3: Ten most evident cases identified by ATUK, where c j is given in (3.1), j = 0, . . . , 4.

Number Sample mean Sample standard deviation Configuration Posterior p-valuex1 x2 x3 s1 s2 s3 PUGS ATUK probability
690 11.6032 13.7804 13.5362 0.7423 0.5050 0.5537 c3 c3 0.8854 <0.001
666 11.8855 14.0871 12.3043 0.6432 0.6170 0.6496 c2 c2 0.8331 <0.001
932 11.7326 14.1231 12.2591 0.8065 0.5371 0.8393 c2 c2 0.7925 0.001
60 12.6841 13.7752 11.6590 0.8529 0.6342 0.3794 c2 c1 0.3671 0.001

649 12.1523 12.9857 11.1680 0.6238 0.3427 0.7030 c1 c1 0.4103 0.001
1012 11.5504 13.1859 11.5521 0.6131 0.5783 0.7021 c2 c2 0.7633 0.002
730 12.0950 13.9087 11.7082 0.8001 0.5572 0.9892 c2 c2 0.7637 0.002

1024 12.0420 13.8963 12.0614 0.7023 0.8051 0.6912 c2 c2 0.8105 0.002
1020 11.7981 13.2402 10.8990 1.2130 0.4921 0.6438 c2 c2 0.5424 0.003
936 10.9425 12.7781 11.2891 0.4494 1.0730 0.4630 c2 c2 0.7926 0.004

PUGS = Polya urn within Gibbs sampling; ATUK = analysis of variance followed by Tukey test.

Bayesian model with prior given by a Dirichlet process. The comparison among experimental condi-
tions were made using the discreteness of the Dirichlet process within a model selection framework.
The posterior probability for models were calculated through a GS algorithm that was implemented
using the Polya urn scheme written in terms of latent variables to indicate equality or inequality among
the experimental conditions.

The performance of the PUGS as well as its comparison with the ATUK was verified on artificial
data sets and on a real dataset. Results show a better performance of PUGS for cases with differences
in variances. Two examples of the better performance of the PUGS are cases 557 and 526 presented in
Table 2. These two cases present a clear difference in standard deviation among control and treatments
conditions, but are not identified as a case with evidence for difference among control and treatment
conditions by ATUK. However, PUGS consider these both cases as being from a model that considers
differences between the control and the two-treatment conditions.

From the biological point of view the results shows that PUGS may illustrate cases not identified
when the usual method ATUK is considered. From the statistical point of view the proposed method
may be viewed as an effective Bayesian alternative to solve problems of multiple comparison. PUGS
can also be easily implemented in usual software such as the R software (The Comprehensive R
Archive Network, http://cran.r-project.org). The code used for computing is in the R language and
can be obtained by e-mail from the first author.

Here we provide some additional results from simulation study for PUGS and ATUK.
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Figure A.1: Average of TPR and FDR for PUGS and ATUK. TPR = number of models correctly identified
divided by N; FDR = number of models M0 incorrectly selected divided by the number of rejected models M0;

ATUK = analysis of variance followed by Tukey test; PUGS = Polya urn within Gibbs sampling.

Appendix A: Simulated dataset for T = 3T = 3T = 3 without M4M4M4

In this Appendix we present a simulation considering a situation with a control and two experimental
condition, similar to described in Section 3.1. However, here we do not generate data from model M4
which consider c1 , c2 , c3 (see expression in (3.1)). This situation is similar to the real dataset.

The parameters values and sample size are the same used in Section 3.1. We consider the propor-
tion of cases generated from each model are (0.70, 0.10, 0.10, 0.10) for (M0,M1,M2,M3), respectively.

Figure A.1 show the TPR and FDR for both methods. As we can note, PUGS also present better
performance than ATUK for this situation, i.e., higher TPR and smaller FDR than ATUK. As we can
note, this better performance is most evident for cases with a difference in variances, γ = 2 and γ = 3.

Appendix B: Simulated dataset for T = 4T = 4T = 4

Consider an experimental situation with a control and three treatments condition. For this case we
have 15 possible models. Table B.1 describes these models written in terms of latent variables.

In order to generate the data sets we fix proportions generated from each configuration ct as 0.30
from c0 and 0.05 from ct, t = 1, . . . , 14. The data sets were generated in a similar way as for M = 3.
Figure B.1 show the TPR and FDR for both methods. As we can note, PUGS also present better
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Table B.1: Model configurations

M0 : c0 = (c1 = c2 = c3 = c3) M5 : c5 = (c1 = c2 , c3 = c4) M10 : c10 = (c1 = c4 , c2 , c3)
M1 : c1 = (c1 = c2 = c3 , c4) M6 : c6 = (c1 = c3 , c2 = c4) M11 : c11 = (c1 , c2 = c3 , c4)
M2 : c2 = (c1 = c2 = c4 , c3) M7 : c7 = (c1 = c4 , c2 = c3) M12 : c12 = (c1 , c2 = c4 , c3)
M3 : c3 = (c1 = c3 = c4 , c2) M8 : c8 = (c1 = c2 , c3 , c4) M13 : c13 = (c1 , c2 , c3 = c4)
M4 : c4 = (c1 , c2 = c3 = c4) M9 : c9 = (c1 = c3 , c2 , c4) M14 : c14 = (c1 , c2 , c3 , c4)
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Figure B.1: Average of TPR and FDR for PUGS and ATUK. TPR = number of models correctly identified
divided by N; FDR = number of models M0 incorrectly selected divided by the number of rejected models M0;

ATUK = analysis of variance followed by Tukey test; PUGS = Polya urn within Gibbs sampling.

performance than ATUK for this situation. This better performance happens for cases with a difference
in variances, γ = 2 and γ = 3.
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